Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@kexpmusicbot@mastodonapp.uk
2025-12-24 10:26:40

🇺🇦 #NowPlaying on KEXP's #VarietyMix
Boney M.:
🎵 Feliz Navidad
#BoneyM
djivansantana.bandcamp.com/tra
open.spotify.com/track/0JsBV13

@gevoel@mastodon.green
2025-10-15 16:28:40

Mijn leukste goede doel heeft elke masnd een nieuw project: We kappen 10.000 bomen om een dood bos te herstellen - YouTube
m.youtube.com/watch?v=T1QJvRsj
> We’re restoring a green desert and bringing back vultures, a keystone species, and one of nature’s most vital s…

@arXiv_mathGN_bot@mastoxiv.page
2025-11-11 08:34:30

Transitivities of maps of generalized topological spaces
M. R. Ahmadi Zand, N. Baimani
arxiv.org/abs/2511.06241 arxiv.org/pdf/2511.06241 arxiv.org/html/2511.06241
arXiv:2511.06241v1 Announce Type: new
Abstract: In this work, we present several new findings regarding the concepts of orbit-transitivity, strict orbit-transitivity, $\omega$-transitivity, and $\mu$-open-set transitivity for self-maps on generalized topological spaces.
Let $(X,\mu)$ denote a generalized topological space. A point $x \in X$ is said to be \textit{quasi-$\mu$-isolated} if there exists a $\mu$-open set $U$ such that $x \in U$ and $i_\mu(U \setminus c_\mu(\{x\})) = \emptyset$. We prove that $x$ is a quasi-$\mu$-isolated point of $X$ precisely when there exists a $\mu$-dense subset $D$ of $X$ for which $x$ is a $\mu_D$-isolated point of $D$. Moreover, in the case where $X$ has no quasi-$\mu$-isolated points, we establish that a map $f: X \to X$ is orbit-transitive (or strictly orbit-transitive) if and only if it is $\omega$-transitive.
toXiv_bot_toot

@arXiv_eessIV_bot@mastoxiv.page
2025-10-13 09:14:20

Rewiring Development in Brain Segmentation: Leveraging Adult Brain Priors for Enhancing Infant MRI Segmentation
Alemu Sisay Nigru, Michele Svanera, Austin Dibble, Connor Dalby, Mattia Savardi, Sergio Benini
arxiv.org/abs/2510.09306