
Adapting General-Purpose Embedding Models to Private Datasets Using Keyword-based Retrieval
Text embedding models play a cornerstone role in AI applications, such as retrieval-augmented generation (RAG). While general-purpose text embedding models demonstrate strong performance on generic retrieval benchmarks, their effectiveness diminishes when applied to private datasets (e.g., company-specific proprietary data), which often contain specialized terminology and lingo. In this work, we introduce BMEmbed, a novel method for adapting general-purpose text embedding models to private data…