Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@fanf@mendeddrum.org
2025-12-10 21:42:02

from my link log —
Coding for non-programmers: we need better web GUI automation tools.
matduggan.com/why-we-need-bett
saved 2021-10-23

@heiseonline@social.heise.de
2026-01-09 06:12:01

„Medizinisches Problem“: NASA lässt ISS-Crew vorzeitig zur Erde zurückfliegen
Drei Astronauten und eine Astronautin sollen die Internationale Raumstation vorzeitig verlassen. Der Grund ist ein medizinisches Problem. Das gab es noch nie.

@anneroth@systemli.social
2026-02-10 20:41:53

Krass.
„Polizisten haben am Dienstagmittag in der Tesla-Fabrik in Grünheide den Computer eines IG-Metallmitglieds in Verwahrung genommen.“
„Die IG Metall dementierte auf Nachfrage, dass ihr Mitglied die Veranstaltung mitgeschnitten habe. Die Gewerkschaft bezeichnete Teslas Vorwurf als Wahlkampfmanöver im Vorfeld der Betriebsratswahl im kommenden Monat.“
Grünheide: Tesla wirft IG Metall heimlichen Mitschnitt einer Sitzung vor

@arXiv_csDS_bot@mastoxiv.page
2026-02-10 09:00:08

Online Algorithm for Fractional Matchings with Edge Arrivals in Graphs of Maximum Degree Three
Kanstantsin Pashkovich, Thomas Snow
arxiv.org/abs/2602.07355 arxiv.org/pdf/2602.07355 arxiv.org/html/2602.07355
arXiv:2602.07355v1 Announce Type: new
Abstract: We study online algorithms for maximum cardinality matchings with edge arrivals in graphs of low degree. Buchbinder, Segev, and Tkach showed that no online algorithm for maximum cardinality fractional matchings can achieve a competitive ratio larger than $4/(9-\sqrt 5)\approx 0.5914$ even for graphs of maximum degree three. The negative result of Buchbinder et al. holds even when the graph is bipartite and edges are revealed according to vertex arrivals, i.e. once a vertex arrives, all edges are revealed that include the newly arrived vertex and one of the previously arrived vertices. In this work, we complement the negative result of Buchbinder et al. by providing an online algorithm for maximum cardinality fractional matchings with a competitive ratio at least $4/(9-\sqrt 5)\approx 0.5914$ for graphs of maximum degree three. We also demonstrate that no online algorithm for maximum cardinality integral matchings can have the competitive guarantee $0.5807$, establishing a gap between integral and fractional matchings for graphs of maximum degree three. Note that the work of Buchbinder et al. shows that for graphs of maximum degree two, there is no such gap between fractional and integral matchings, because for both of them the best achievable competitive ratio is $2/3$. Also, our results demonstrate that for graphs of maximum degree three best possible competitive ratios for fractional matchings are the same in the vertex arrival and in the edge arrival models.
toXiv_bot_toot

@radioeinsmusicbot@mastodonapp.uk
2025-12-09 17:20:33

🇺🇦 Auf radioeins läuft...
Madison Cunningham:
🎵 Golden Gate (On And On)
#NowPlaying #MadisonCunningham
open.spotify.com/track/4yjzFXK

@memeorandum@universeodon.com
2026-02-10 22:50:50

Les Wexner Donated to Several Republican Candidates As Recently as Last Year (Aaron Parnas/MeidasTouch News)
meidasnews.com/news/les-wexner
memeorandum.com/260210/p132#a2

@servelan@newsie.social
2026-02-10 04:37:09

This is very meaningful, #PONTIFEX is taking a side
Pope Leo sends 80 generators, thousands of medical supplies to Ukraine
kyivindependent.com/pope-leo-s

@heiseonline@social.heise.de
2026-01-10 10:38:00

Nasa holt ISS-Crew kommende Woche zurück
Wegen eines medizinischen Problems holt die US-Raumfahrtbehörde eine Besatzung vorzeitig von der ISS zurück. Losgehen soll es am Mittwoch.
heise.d…

@heiseonline@social.heise.de
2026-02-09 16:42:00

ChatGPT als Arzt-Ersatz? Studie zeigt ernüchternde Ergebnisse
KI-Sprachmodelle bestehen medizinische Prüfungen mit Bravour – doch wenn echte Menschen sie um Rat fragen, versagt die Zusammenarbeit.

@arXiv_csDS_bot@mastoxiv.page
2026-02-10 10:58:06

Approximate Cartesian Tree Matching with Substitutions
Panagiotis Charalampopoulos, Jonas Ellert, Manal Mohamed
arxiv.org/abs/2602.08570 arxiv.org/pdf/2602.08570 arxiv.org/html/2602.08570
arXiv:2602.08570v1 Announce Type: new
Abstract: The Cartesian tree of a sequence captures the relative order of the sequence's elements. In recent years, Cartesian tree matching has attracted considerable attention, particularly due to its applications in time series analysis. Consider a text $T$ of length $n$ and a pattern $P$ of length $m$. In the exact Cartesian tree matching problem, the task is to find all length-$m$ fragments of $T$ whose Cartesian tree coincides with the Cartesian tree $CT(P)$ of the pattern. Although the exact version of the problem can be solved in linear time [Park et al., TCS 2020], it remains rather restrictive; for example, it is not robust to outliers in the pattern.
To overcome this limitation, we consider the approximate setting, where the goal is to identify all fragments of $T$ that are close to some string whose Cartesian tree matches $CT(P)$. In this work, we quantify closeness via the widely used Hamming distance metric. For a given integer parameter $k>0$, we present an algorithm that computes all fragments of $T$ that are at Hamming distance at most $k$ from a string whose Cartesian tree matches $CT(P)$. Our algorithm runs in time $\mathcal O(n \sqrt{m} \cdot k^{2.5})$ for $k \leq m^{1/5}$ and in time $\mathcal O(nk^5)$ for $k \geq m^{1/5}$, thereby improving upon the state-of-the-art $\mathcal O(nmk)$-time algorithm of Kim and Han [TCS 2025] in the regime $k = o(m^{1/4})$.
On the way to our solution, we develop a toolbox of independent interest. First, we introduce a new notion of periodicity in Cartesian trees. Then, we lift multiple well-known combinatorial and algorithmic results for string matching and periodicity in strings to Cartesian tree matching and periodicity in Cartesian trees.
toXiv_bot_toot