Reward Models Enable Scalable Code Verification by Trading Accuracy for Throughput
Gabriel Orlanski, Nicholas Roberts, Aws Albarghouthi, Frederic Sala
https://arxiv.org/abs/2506.10056
Verification of the Release-Acquire Semantics
Parosh Abdulla, Elli Anastasiadi, Mohamed Faouzi Atig, Samuel Grahn
https://arxiv.org/abs/2506.08238 https://…
Nominal Equational Rewriting and Narrowing
Mauricio Ayala-Rinc\'on (University of Bras\'ilia, Brazil), Maribel Fern\'andez (King's College London, UK), Daniele Nantes-Sobrinho (University of Bras\'ilia, Brazil,Imperial College London, UK), Daniella Santaguida (University of Bras\'ilia, Brazil)
https://arx…
MLorc: Momentum Low-rank Compression for Large Language Model Adaptation
Wei Shen, Yaxiang Zhang, Minhui Huang, Mengfan Xu, Jiawei Zhang, Cong Shen
https://arxiv.org/abs/2506.01897
This https://arxiv.org/abs/2406.06095 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csMS_…
Movie Facts and Fibs (MF$^2$): A Benchmark for Long Movie Understanding
Emmanouil Zaranis, Ant\'onio Farinhas, Saul Santos, Beatriz Canaverde, Miguel Moura Ramos, Aditya K Surikuchi, Andr\'e Viveiros, Baohao Liao, Elena Bueno-Benito, Nithin Sivakumaran, Pavlo Vasylenko, Shoubin Yu, Sonal Sannigrahi, Wafaa Mohammed, Ben Peters, Danae S\'anchez Villegas, Elias Stengel-Eskin, Giuseppe Attanasio, Jaehong Yoon, Stella Frank, Alessandro Suglia, Chrysoula Zerva, Desmond Elliott, M…
VeriLoC: Line-of-Code Level Prediction of Hardware Design Quality from Verilog Code
Raghu Vamshi Hemadri, Jitendra Bhandari, Johann Knechtel, Badri P Gopalan, Ramesh Narayanaswamy, Ramesh Karri, Siddharth Garg
https://arxiv.org/abs/2506.07239
Fairness Dynamics During Training
Krishna Patel, Nivedha Sivakumar, Barry-John Theobald, Luca Zappella, Nicholas Apostoloff
https://arxiv.org/abs/2506.01709
A Large Language Model for Chemistry and Retrosynthesis Predictions
Yueqing Zhang, Wentao Liu, Yan Zhang, Danyang Xiong, Jihang Zhai, Hao Hao, YuCheng Gu, HaiBo Yang, Shuanhu Gao, Lianrui Hu, Aimin Zhou, Xiao He
https://arxiv.org/abs/2507.01444
Memory-Efficient Split Federated Learning for LLM Fine-Tuning on Heterogeneous Mobile Devices
Xiaopei Chen, Liang Li, Fei Ji, Wen Wu
https://arxiv.org/abs/2506.02940