Hands off the EU’s environmental laws! #Europe
Evolutionary Profiles for Protein Fitness Prediction
Jigang Fan, Xiaoran Jiao, Shengdong Lin, Zhanming Liang, Weian Mao, Chenchen Jing, Hao Chen, Chunhua Shen
https://arxiv.org/abs/2510.07286
Utilizing Model-Free Reinforcement Learning for Optimizing Secure Multi-Party Computation Protocols
Javad Sayyadi, Mahdi Nangir, Mahmood Mohassel Feghhi, Hamid Sayyadi
https://arxiv.org/abs/2510.07814 …
No MoCap Needed: Post-Training Motion Diffusion Models with Reinforcement Learning using Only Textual Prompts
Girolamo Macaluso, Lorenzo Mandelli, Mirko Bicchierai, Stefano Berretti, Andrew D. Bagdanov
https://arxiv.org/abs/2510.06988
Reinforcement Learning from Probabilistic Forecasts for Safe Decision-Making via Conditional Value-at-Risk Planning
Michal Koren, Or Peretz, Tai Dinh, Philip S. Yu
https://arxiv.org/abs/2510.08226
Reinforcing Diffusion Models by Direct Group Preference Optimization
Yihong Luo, Tianyang Hu, Jing Tang
https://arxiv.org/abs/2510.08425 https://arxiv.org/…
Expressive Value Learning for Scalable Offline Reinforcement Learning
Nicolas Espinosa-Dice, Kiante Brantley, Wen Sun
https://arxiv.org/abs/2510.08218 https://
Convergence Theorems for Entropy-Regularized and Distributional Reinforcement Learning
Yash Jhaveri, Harley Wiltzer, Patrick Shafto, Marc G. Bellemare, David Meger
https://arxiv.org/abs/2510.08526
ClauseLens: Clause-Grounded, CVaR-Constrained Reinforcement Learning for Trustworthy Reinsurance Pricing
Stella C. Dong, James R. Finlay
https://arxiv.org/abs/2510.08429 https:/…
The Choice of Divergence: A Neglected Key to Mitigating Diversity Collapse in Reinforcement Learning with Verifiable Reward
Long Li, Jiaran Hao, Jason Klein Liu, Zhijian Zhou, Xiaoyu Tan, Wei Chu, Zhe Wang, Shirui Pan, Chao Qu, Yuan Qi
https://arxiv.org/abs/2509.07430