
On some conjectural supercongruences involving the sequence $t_n(x)$
In this paper, we study some supercongruences involving the sequence $$ t_n(x)=\sum_{k=0}^n\binom{n}{k}\binom{x}{k}\binom{x+k}{k}2^k $$ and solve some open problems. For any odd prime $p$ and $p$-adic integer $x$, we determine $\sum_{n=0}^{p-1}t_n(x)^2$ and $\sum_{n=0}^{p-1}(n+1)t_n(x)^2$ modulo $p^2$; for example, we establish that
\begin{align*}
\sum_{n=0}^{p-1}t_n(x)^2\equiv\begin{cases}
\left(\dfrac{-1}{p}\right)\pmod{p^2},&\text{if }2x\equiv-1\pmod{p},\\[8pt]
(-1)^{\langle x\rangle…