Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@iam_jfnklstrm@social.linux.pizza
2025-12-17 08:21:23

Det här tycker jag är läskigt på riktigt svt.se/nyheter/inrikes/har-for speciellt som Sjölund skriver detta

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:32:30

You Only Train Once: Differentiable Subset Selection for Omics Data
Daphn\'e Chopard, Jorge da Silva Gon\c{c}alves, Irene Cannistraci, Thomas M. Sutter, Julia E. Vogt
arxiv.org/abs/2512.17678 arxiv.org/pdf/2512.17678 arxiv.org/html/2512.17678
arXiv:2512.17678v1 Announce Type: new
Abstract: Selecting compact and informative gene subsets from single-cell transcriptomic data is essential for biomarker discovery, improving interpretability, and cost-effective profiling. However, most existing feature selection approaches either operate as multi-stage pipelines or rely on post hoc feature attribution, making selection and prediction weakly coupled. In this work, we present YOTO (you only train once), an end-to-end framework that jointly identifies discrete gene subsets and performs prediction within a single differentiable architecture. In our model, the prediction task directly guides which genes are selected, while the learned subsets, in turn, shape the predictive representation. This closed feedback loop enables the model to iteratively refine both what it selects and how it predicts during training. Unlike existing approaches, YOTO enforces sparsity so that only the selected genes contribute to inference, eliminating the need to train additional downstream classifiers. Through a multi-task learning design, the model learns shared representations across related objectives, allowing partially labeled datasets to inform one another, and discovering gene subsets that generalize across tasks without additional training steps. We evaluate YOTO on two representative single-cell RNA-seq datasets, showing that it consistently outperforms state-of-the-art baselines. These results demonstrate that sparse, end-to-end, multi-task gene subset selection improves predictive performance and yields compact and meaningful gene subsets, advancing biomarker discovery and single-cell analysis.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:34:50

Regularized Random Fourier Features and Finite Element Reconstruction for Operator Learning in Sobolev Space
Xinyue Yu, Hayden Schaeffer
arxiv.org/abs/2512.17884 arxiv.org/pdf/2512.17884 arxiv.org/html/2512.17884
arXiv:2512.17884v1 Announce Type: new
Abstract: Operator learning is a data-driven approximation of mappings between infinite-dimensional function spaces, such as the solution operators of partial differential equations. Kernel-based operator learning can offer accurate, theoretically justified approximations that require less training than standard methods. However, they can become computationally prohibitive for large training sets and can be sensitive to noise. We propose a regularized random Fourier feature (RRFF) approach, coupled with a finite element reconstruction map (RRFF-FEM), for learning operators from noisy data. The method uses random features drawn from multivariate Student's $t$ distributions, together with frequency-weighted Tikhonov regularization that suppresses high-frequency noise. We establish high-probability bounds on the extreme singular values of the associated random feature matrix and show that when the number of features $N$ scales like $m \log m$ with the number of training samples $m$, the system is well-conditioned, which yields estimation and generalization guarantees. Detailed numerical experiments on benchmark PDE problems, including advection, Burgers', Darcy flow, Helmholtz, Navier-Stokes, and structural mechanics, demonstrate that RRFF and RRFF-FEM are robust to noise and achieve improved performance with reduced training time compared to the unregularized random feature model, while maintaining competitive accuracy relative to kernel and neural operator tests.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 11:50:31

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[2/3]:
- Sharp Structure-Agnostic Lower Bounds for General Functional Estimation
Jikai Jin, Vasilis Syrgkanis
arxiv.org/abs/2512.17341 mastoxiv.page/@arXiv_statML_bo
- Timely Information Updating for Mobile Devices Without and With ML Advice
Yu-Pin Hsu, Yi-Hsuan Tseng
arxiv.org/abs/2512.17381 mastoxiv.page/@arXiv_csNI_bot/
- SWE-Bench : A Framework for the Scalable Generation of Software Engineering Benchmarks from Open...
Wang, Ramalho, Celestino, Pham, Liu, Sinha, Portillo, Osunwa, Maduekwe
arxiv.org/abs/2512.17419 mastoxiv.page/@arXiv_csSE_bot/
- Perfect reconstruction of sparse signals using nonconvexity control and one-step RSB message passing
Xiaosi Gu, Ayaka Sakata, Tomoyuki Obuchi
arxiv.org/abs/2512.17426 mastoxiv.page/@arXiv_statML_bo
- MULTIAQUA: A multimodal maritime dataset and robust training strategies for multimodal semantic s...
Jon Muhovi\v{c}, Janez Per\v{s}
arxiv.org/abs/2512.17450 mastoxiv.page/@arXiv_csCV_bot/
- When Data Quality Issues Collide: A Large-Scale Empirical Study of Co-Occurring Data Quality Issu...
Emmanuel Charleson Dapaah, Jens Grabowski
arxiv.org/abs/2512.17460 mastoxiv.page/@arXiv_csSE_bot/
- Behavioural Effects of Agentic Messaging: A Case Study on a Financial Service Application
Olivier Jeunen, Schaun Wheeler
arxiv.org/abs/2512.17462 mastoxiv.page/@arXiv_csIR_bot/
- Linear Attention for Joint Power Optimization and User-Centric Clustering in Cell-Free Networks
Irched Chafaa, Giacomo Bacci, Luca Sanguinetti
arxiv.org/abs/2512.17466 mastoxiv.page/@arXiv_eessSY_bo
- Translating the Rashomon Effect to Sequential Decision-Making Tasks
Dennis Gross, J{\o}rn Eirik Betten, Helge Spieker
arxiv.org/abs/2512.17470 mastoxiv.page/@arXiv_csAI_bot/
- Alternating Direction Method of Multipliers for Nonlinear Matrix Decompositions
Atharva Awari, Nicolas Gillis, Arnaud Vandaele
arxiv.org/abs/2512.17473 mastoxiv.page/@arXiv_eessSP_bo
- TwinSegNet: A Digital Twin-Enabled Federated Learning Framework for Brain Tumor Analysis
Almustapha A. Wakili, Adamu Hussaini, Abubakar A. Musa, Woosub Jung, Wei Yu
arxiv.org/abs/2512.17488 mastoxiv.page/@arXiv_csCV_bot/
- Resource-efficient medical image classification for edge devices
Mahsa Lavaei, Zahra Abadi, Salar Beigzad, Alireza Maleki
arxiv.org/abs/2512.17515 mastoxiv.page/@arXiv_eessIV_bo
- PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning i...
Brussee, Valkema, Weijer, Doeleman, Schrader, Kers
arxiv.org/abs/2512.17517 mastoxiv.page/@arXiv_csCV_bot/
- HydroGym: A Reinforcement Learning Platform for Fluid Dynamics
Christian Lagemann, et al.
arxiv.org/abs/2512.17534 mastoxiv.page/@arXiv_physicsfl
- When De-noising Hurts: A Systematic Study of Speech Enhancement Effects on Modern Medical ASR Sys...
Chondhekar, Murukuri, Vasani, Goyal, Badami, Rana, SN, Pandia, Katiyar, Jagadeesh, Gulati
arxiv.org/abs/2512.17562 mastoxiv.page/@arXiv_csSD_bot/
- Enabling Disaggregated Multi-Stage MLLM Inference via GPU-Internal Scheduling and Resource Sharing
Lingxiao Zhao, Haoran Zhou, Yuezhi Che, Dazhao Cheng
arxiv.org/abs/2512.17574 mastoxiv.page/@arXiv_csDC_bot/
- SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation i...
N. A. Adarsh Pritam, Jeba Shiney O, Sanyam Jain
arxiv.org/abs/2512.17585 mastoxiv.page/@arXiv_eessIV_bo
- MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection an...
Tosin Ige, Christopher Kiekintveld, Aritran Piplai, Asif Rahman, Olukunle Kolade, Sasidhar Kunapuli
arxiv.org/abs/2512.17594 mastoxiv.page/@arXiv_csCR_bot/
- Confidence-Credibility Aware Weighted Ensembles of Small LLMs Outperform Large LLMs in Emotion De...
Menna Elgabry, Ali Hamdi
arxiv.org/abs/2512.17630 mastoxiv.page/@arXiv_csCL_bot/
- Generative Multi-Objective Bayesian Optimization with Scalable Batch Evaluations for Sample-Effic...
Madhav R. Muthyala, Farshud Sorourifar, Tianhong Tan, You Peng, Joel A. Paulson
arxiv.org/abs/2512.17659 mastoxiv.page/@arXiv_statML_bo
toXiv_bot_toot

@arXiv_eessSY_bot@mastoxiv.page
2025-10-03 10:02:01

Detection and Identification of Sensor Attacks Using Data
Takumi Shinohara, Karl H. Johansson, Henrik Sandberg
arxiv.org/abs/2510.02183 arx…

@arXiv_statML_bot@mastoxiv.page
2025-10-07 09:04:12

Transformed $\ell_1$ Regularizations for Robust Principal Component Analysis: Toward a Fine-Grained Understanding
Kun Zhao, Haoke Zhang, Jiayi Wang, Yifei Lou
arxiv.org/abs/2510.03624

@arXiv_hepth_bot@mastoxiv.page
2025-09-30 09:59:01

All Giant Graviton Two-Point Functions at Two-Loops
Yu Wu, Yunfeng Jiang, Chang Liu, Yang Zhang
arxiv.org/abs/2509.23161 arxiv.org/pdf/2509…

@arXiv_csLG_bot@mastoxiv.page
2025-09-25 10:49:02

Dynamic Lagging for Time-Series Forecasting in E-Commerce Finance: Mitigating Information Loss with A Hybrid ML Architecture
Abhishek Sharma, Anat Parush, Sumit Wadhwa, Amihai Savir, Anne Guinard, Prateek Srivastava
arxiv.org/abs/2509.20244