Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@life_is@no-pony.farm
2025-06-03 06:23:59

#nzz #threema #schweiz

«Je mehr Daten wir über unsere Nutzer speichern, desto attraktiver sind wir für Hacker» 

Der Staatsanwalt Umberto Pajarola lässt Strcftäter überwachen. Peter Szab6, Hausjurist des Schweizer Messenger-Dienstes |hreema, möchte den Ausbau des Überwachungsstacts verhindern. Im Gespräch mit Gioia da Silva streiten sie darüber, ob wir gewinnen oder verlieren, sollte die Polizei wie geplant bald mehr Daten bekommen
könnte. Dann wären Demokratieaktivisten, Journalisten, Whistleblower nicht mehr geschützt. Je mehr Daten wir über unsere Nutzer speichern, desto attraktıver sind wir für Hacker. 

Herr Pajarola, inwiefern sehen Sie die Schweiz in der Verantwortung, einen Dienst wie Threema zu hosten, der Demokratieaktivisten zum Beispiel in Hongkong eine sichere Kommunikations-App bietet? 

Pajarola: Eine Verantwortung der Schweiz sehe ich nicht. Ich finde es den-
schnell gefunden wird und zweitens die Täter gefasst würden. Die Privatsphäre interessiert Sie dann nicht mehr. 

Szabö: Aus einer menschlichen Sicht mag das sein. Aber wir müssen gesamtgesellschaftlich denken. Wenn wir die Vorratsdatenspeicherung einführen, schwächen wir die Sicherheit von uns allen. 

Pajarola: Wenn wir über den gesamtgesellschaftlichen Umgang mit Privatsphäre nachdenken, müssen wir sagen: Firmen hinter Dating-Apps, Einkaufsplattformen, Mobile Banking et cetera haben sehr aus…
@Life_is@no-pony.farm
2025-06-03 06:23:59

#nzz #threema #schweiz

«Je mehr Daten wir über unsere Nutzer speichern, desto attraktiver sind wir für Hacker» 

Der Staatsanwalt Umberto Pajarola lässt Strcftäter überwachen. Peter Szab6, Hausjurist des Schweizer Messenger-Dienstes |hreema, möchte den Ausbau des Überwachungsstacts verhindern. Im Gespräch mit Gioia da Silva streiten sie darüber, ob wir gewinnen oder verlieren, sollte die Polizei wie geplant bald mehr Daten bekommen
könnte. Dann wären Demokratieaktivisten, Journalisten, Whistleblower nicht mehr geschützt. Je mehr Daten wir über unsere Nutzer speichern, desto attraktıver sind wir für Hacker. 

Herr Pajarola, inwiefern sehen Sie die Schweiz in der Verantwortung, einen Dienst wie Threema zu hosten, der Demokratieaktivisten zum Beispiel in Hongkong eine sichere Kommunikations-App bietet? 

Pajarola: Eine Verantwortung der Schweiz sehe ich nicht. Ich finde es den-
schnell gefunden wird und zweitens die Täter gefasst würden. Die Privatsphäre interessiert Sie dann nicht mehr. 

Szabö: Aus einer menschlichen Sicht mag das sein. Aber wir müssen gesamtgesellschaftlich denken. Wenn wir die Vorratsdatenspeicherung einführen, schwächen wir die Sicherheit von uns allen. 

Pajarola: Wenn wir über den gesamtgesellschaftlichen Umgang mit Privatsphäre nachdenken, müssen wir sagen: Firmen hinter Dating-Apps, Einkaufsplattformen, Mobile Banking et cetera haben sehr aus…
@heiseonline@social.heise.de
2025-06-04 06:41:14

KI oder nicht KI, das ist hier die Frage! 🤷‍♂️🤷‍♀️
Builder.ai, ein einst hochgehandeltes KI-Start-up mit Sitz in London, sorgt für Schlagzeilen.
Zum Artikel: heise.de/-10422912?wt_mc=sm.re

Auf dem Bild ist von hinten zu sehen, wie ein Programmierer an mehreren Bildschirmen arbeitet. Im Bild steht: "Hinter KI-Chatbot 
sollen 700 indische Programmierer stecken" dadrunter steht: "Das Startup Builder.ai ist insolvent. Nun gibt es schwere Vorwürfe: Statt KI-Chatbot Natasha 
sollen Programmierer die Arbeit erledigt haben."
@gratianriter@bildung.social
2025-07-03 09:49:57

Kommenden Dienstag 8.7.25, 19:30 Uhr, ist es so weit:
Michael Blume in der Manufaktur
Sturmflut der Lügen - Wie wir unsere Gesellschaft gegen Desinformation Wappnen
@…
#schorndorf

Sharepics: Sturmflut der Lügen – Wie wir unsere Gesellschaft gegen Desinformation wappnen 
Vortrag mit 

Michael Blume

8.7.2025, 19:30 Uhr
Manufaktur Schorndorf
Eintritt frei, um Spenden wird gebeten
Veranstalter – Schorndorfer Bündnis gegen Rassismus und Rechtsextremismus in Kooperation mit dem Forum Politik in der Manufaktur
Das digitale Zeitalter hat eine neue Generation von Verschwörungsmythen, Fake Facts und Desinformationen hervorgebracht, die unsere Demokratie, ja uns alle herausfordern und bedrohen.
Egal ob Coronapandemie, Energiekrise oder der russische Angriffskrieg: Krisenzeiten begünstigen Verschwörungsglauben und wo Verschwörungsmythen sich verbreiten, ist Antisemitismus nie weit. Wenn die Pest kam, brannten die Synagogen. Es erschien stets einfacher, andere anzugreifen als mit einer diffusen Angst vernü…
Wir müssen uns als Gesellschaft auf kommende Krisen vorbereiten müssen. Dazu zählt auch der Klimawandel. An der Tragödie im Ahrtal sehen wir, wie Starkregen ganze Existenzen wegreißen kann. Und durch die anhaltende Trockenheit in anderen Teilen Deutschlands wird Wasser immer mehr zur Mangelware. Wir müssen befürchten, dass auch dabei Desinformation, Verschwörungsmythen und sogar Antisemitismus aufflackern werden. Doch wenn wir jetzt schon darüber aufklären, können wir unsere Demokratie dagegen …
Dr. Michael Blume, Religions- und Politikwissenschaftler, ist Beauftragter gegen Antisemitismus in Baden-Württemberg. Der evangelische Christ ist mit einer Muslimin verheiratet und leitete bis Juni 2020 das Referat »Nichtchristliche Religionen, Werte, Minderheiten und Projekte Nordirak« im Staatsministerium Baden-Württemberg. Er hat über Religion und Hirnforschung promoviert und zuletzt das Buch „Verschwörungsmythen – Woher sie kommen, was sie anrichten, wie wir ihnen begegnen können“ veröffent…
@tiotasram@kolektiva.social
2025-08-04 15:49:00

Should we teach vibe coding? Here's why not.
Should AI coding be taught in undergrad CS education?
1/2
I teach undergraduate computer science labs, including for intro and more-advanced core courses. I don't publish (non-negligible) scholarly work in the area, but I've got years of craft expertise in course design, and I do follow the academic literature to some degree. In other words, In not the world's leading expert, but I have spent a lot of time thinking about course design, and consider myself competent at it, with plenty of direct experience in what knowledge & skills I can expect from students as they move through the curriculum.
I'm also strongly against most uses of what's called "AI" these days (specifically, generative deep neutral networks as supplied by our current cadre of techbro). There are a surprising number of completely orthogonal reasons to oppose the use of these systems, and a very limited number of reasonable exceptions (overcoming accessibility barriers is an example). On the grounds of environmental and digital-commons-pollution costs alone, using specifically the largest/newest models is unethical in most cases.
But as any good teacher should, I constantly question these evaluations, because I worry about the impact on my students should I eschew teaching relevant tech for bad reasons (and even for his reasons). I also want to make my reasoning clear to students, who should absolutely question me on this. That inspired me to ask a simple question: ignoring for one moment the ethical objections (which we shouldn't, of course; they're very stark), at what level in the CS major could I expect to teach a course about programming with AI assistance, and expect students to succeed at a more technically demanding final project than a course at the same level where students were banned from using AI? In other words, at what level would I expect students to actually benefit from AI coding "assistance?"
To be clear, I'm assuming that students aren't using AI in other aspects of coursework: the topic of using AI to "help you study" is a separate one (TL;DR it's gross value is not negative, but it's mostly not worth the harm to your metacognitive abilities, which AI-induced changes to the digital commons are making more important than ever).
So what's my answer to this question?
If I'm being incredibly optimistic, senior year. Slightly less optimistic, second year of a masters program. Realistic? Maybe never.
The interesting bit for you-the-reader is: why is this my answer? (Especially given that students would probably self-report significant gains at lower levels.) To start with, [this paper where experienced developers thought that AI assistance sped up their work on real tasks when in fact it slowed it down] (arxiv.org/abs/2507.09089) is informative. There are a lot of differences in task between experienced devs solving real bugs and students working on a class project, but it's important to understand that we shouldn't have a baseline expectation that AI coding "assistants" will speed things up in the best of circumstances, and we shouldn't trust self-reports of productivity (or the AI hype machine in general).
Now we might imagine that coding assistants will be better at helping with a student project than at helping with fixing bugs in open-source software, since it's a much easier task. For many programming assignments that have a fixed answer, we know that many AI assistants can just spit out a solution based on prompting them with the problem description (there's another elephant in the room here to do with learning outcomes regardless of project success, but we'll ignore this over too, my focus here is on project complexity reach, not learning outcomes). My question is about more open-ended projects, not assignments with an expected answer. Here's a second study (by one of my colleagues) about novices using AI assistance for programming tasks. It showcases how difficult it is to use AI tools well, and some of these stumbling blocks that novices in particular face.
But what about intermediate students? Might there be some level where the AI is helpful because the task is still relatively simple and the students are good enough to handle it? The problem with this is that as task complexity increases, so does the likelihood of the AI generating (or copying) code that uses more complex constructs which a student doesn't understand. Let's say I have second year students writing interactive websites with JavaScript. Without a lot of care that those students don't know how to deploy, the AI is likely to suggest code that depends on several different frameworks, from React to JQuery, without actually setting up or including those frameworks, and of course three students would be way out of their depth trying to do that. This is a general problem: each programming class carefully limits the specific code frameworks and constructs it expects students to know based on the material it covers. There is no feasible way to limit an AI assistant to a fixed set of constructs or frameworks, using current designs. There are alternate designs where this would be possible (like AI search through adaptation from a controlled library of snippets) but those would be entirely different tools.
So what happens on a sizeable class project where the AI has dropped in buggy code, especially if it uses code constructs the students don't understand? Best case, they understand that they don't understand and re-prompt, or ask for help from an instructor or TA quickly who helps them get rid of the stuff they don't understand and re-prompt or manually add stuff they do. Average case: they waste several hours and/or sweep the bugs partly under the rug, resulting in a project with significant defects. Students in their second and even third years of a CS major still have a lot to learn about debugging, and usually have significant gaps in their knowledge of even their most comfortable programming language. I do think regardless of AI we as teachers need to get better at teaching debugging skills, but the knowledge gaps are inevitable because there's just too much to know. In Python, for example, the LLM is going to spit out yields, async functions, try/finally, maybe even something like a while/else, or with recent training data, the walrus operator. I can't expect even a fraction of 3rd year students who have worked with Python since their first year to know about all these things, and based on how students approach projects where they have studied all the relevant constructs but have forgotten some, I'm not optimistic seeing these things will magically become learning opportunities. Student projects are better off working with a limited subset of full programming languages that the students have actually learned, and using AI coding assistants as currently designed makes this impossible. Beyond that, even when the "assistant" just introduces bugs using syntax the students understand, even through their 4th year many students struggle to understand the operation of moderately complex code they've written themselves, let alone written by someone else. Having access to an AI that will confidently offer incorrect explanations for bugs will make this worse.
To be sure a small minority of students will be able to overcome these problems, but that minority is the group that has a good grasp of the fundamentals and has broadened their knowledge through self-study, which earlier AI-reliant classes would make less likely to happen. In any case, I care about the average student, since we already have plenty of stuff about our institutions that makes life easier for a favored few while being worse for the average student (note that our construction of that favored few as the "good" students is a large part of this problem).
To summarize: because AI assistants introduce excess code complexity and difficult-to-debug bugs, they'll slow down rather than speed up project progress for the average student on moderately complex projects. On a fixed deadline, they'll result in worse projects, or necessitate less ambitious project scoping to ensure adequate completion, and I expect this remains broadly true through 4-6 years of study in most programs (don't take this as an endorsement of AI "assistants" for masters students; we've ignored a lot of other problems along the way).
There's a related problem: solving open-ended project assignments well ultimately depends on deeply understanding the problem, and AI "assistants" allow students to put a lot of code in their file without spending much time thinking about the problem or building an understanding of it. This is awful for learning outcomes, but also bad for project success. Getting students to see the value of thinking deeply about a problem is a thorny pedagogical puzzle at the best of times, and allowing the use of AI "assistants" makes the problem much much worse. This is another area I hope to see (or even drive) pedagogical improvement in, for what it's worth.
1/2

@lysander07@sigmoid.social
2025-06-03 07:18:19

ESWC 2025 has just started with the presentation of the submission numbers to the individual tracks:
research track: 98 papers
resource track: 36 papers
in-use track: 22 papers
Looking forward to great presentations and discussions!
#eswc2025 #semweb

The image shows a presentation slide titled "Research Track in Numbers" displayed on a projector screen. The slide details the statistics of a research track, including the number of abstracts and full paper submissions, the acceptance rate, and the reviewing team's performance. It states that there were 125 abstracts and 98 full paper submissions, with 5 desk rejects and 26 accepted papers, representing a 26.5% acceptance rate. The reviewing team consisted of 23 Senior Program Committee (SPC) …
The image shows a presentation slide titled "In-Use Track in Numbers" displayed on a large screen. The slide contains bullet points with statistical information about the track. The first bullet point states that there were 22 abstracts and 22 full submissions, with 0 desk rejects and 8 accepted papers, which is 36.3% of the submissions, indicating a very competitive track. The second bullet point highlights the "Great reviewing team!" with 25 reviewers, 71 reviews in total, and an average of 3…
The image shows a presentation slide titled "Resource Track in Numbers" displayed on a large screen. The slide contains bullet points with numerical data. The first bullet point states "41 abstracts / 36 full submissions," with sub-points indicating "1 desk reject" and "11 accepted papers (30.6%)." The second bullet point is labeled "Reviewing" and includes "131 reviews," "10 SPC," and "52 reviewers." A person is standing at a podium to the left of the screen, wearing a green shirt and a lanyar…
@aral@mastodon.ar.al
2025-07-04 22:08:48

Thread 👇 hachyderm.io/@shanselman/11479

@heiseonline@social.heise.de
2025-07-04 09:37:05

So ein Strandzugang wäre schon ein besserer Lebensumstand. 🏝️
Deutschlands Freelancer schauen zunehmend über den Tellerrand – und das aus gutem Grund! 🌍
Zum Artikel: heise.de/-10474098

Das Bild zeigt eine am Strand sitzende Person die vor ihrem Notebook jubiliert. Im Bild steht: "Auswanderungswille unter deutschen Freelancern nimmt leicht ab" dadrunter steht: "Fast die Hälfte der Freelancer in Deutschland zieht es ins Ausland, wie eine aktuelle Umfrage des Portals Freelancermap zeigt."
@heiseonline@social.heise.de
2025-06-03 08:27:31

AVM sorgt für frischen Wind auf der Anga Com in Köln und präsentiert gleich mehrere Neuheiten. ✨
Zum Artikel: heise.de/-10422267?wt_mc=sm.re

Im Bild sieht man die neuen Fritzbox-Modelle. Im Bild steht: "AVM präsentiert neue 
Wi-Fi-7-Fritzboxen und Outdoor-Repeater" dadrunter steht: "Auf der Kölner Netzwerkmesse Anga Com stellt
AVM spannende Neuheiten vor: drei Wi-Fi-7-
Fritzboxen und einen Outdoor-Repeater, 
der für den Einsatz im Freien konzipiert ist."
@heiseonline@social.heise.de
2025-06-05 05:54:10

Faxgeräte in Rente: Die Geräte haben in vielen Unternehmen ausgedient! 📠 Laut einer aktuellen Bitkom-Umfrage nutzt nicht mal mehr jedes fünfte Unternehmen in Deutschland regelmäßig ein Fax.
Zum Artikel: heise.de/-10425507?wt_mc=sm.re

Im Bild sieht man ein Faxgerät. Im Bild steht: "Umfrage
Vier von fünf Unternehmen nutzen kein Fax mehr" dadrunter steht: "Nicht einmal jedes fünfte Unternehmen in Deutschland nutzt noch regelmäßig ein Fax-Gerät 
für die interne oder externe Kommunikation."