Aha, im deutschen Reddit posten jetzt also Leute, die vermutlich keine zwei Tage Arbeit in einem Dönerladen oder Barbershop durchstehen würden, Bilder davon als Beitrag zur 'Stadtbilddebatte', weil ihnen das Äußere nicht gefällt.
Das ist also die Art 'Problem' die das verkommene Pack gerne mit Abschiebungen 'lösen' möchte, um dort endlich schönen Leerstand zu haben.
Das Kanzlerwunder hat aber natürlich was ganz anderes gemeint. (Vgl. "dogwhistle"…
Orchideen stehen - so ließ ich mir sagen - für Schönheit und so. Na dann!
Handgemalter #wandklexschmuck; auch in verschiedenen weiteren Varianten zu finden auf #orchids #miniaturepainting #art #ArtShop #fediArt #mastoArt #creativeToots
"aan alle kiezers: kies in het stemhokje voor een leefbare en gezonde toekomst, zonder fossiele brandstoffen. De toekomstige generaties zullen jullie er dankbaar voor zijn."
#TK2025
S-D-RSM: Stochastic Distributed Regularized Splitting Method for Large-Scale Convex Optimization Problems
Maoran Wang, Xingju Cai, Yongxin Chen
https://arxiv.org/abs/2511.10133 https://arxiv.org/pdf/2511.10133 https://arxiv.org/html/2511.10133
arXiv:2511.10133v1 Announce Type: new
Abstract: This paper investigates the problems large-scale distributed composite convex optimization, with motivations from a broad range of applications, including multi-agent systems, federated learning, smart grids, wireless sensor networks, compressed sensing, and so on. Stochastic gradient descent (SGD) and its variants are commonly employed to solve such problems. However, existing algorithms often rely on vanishing step sizes, strong convexity assumptions, or entail substantial computational overhead to ensure convergence or obtain favorable complexity. To bridge the gap between theory and practice, we integrate consensus optimization and operator splitting techniques (see Problem Reformulation) to develop a novel stochastic splitting algorithm, termed the \emph{stochastic distributed regularized splitting method} (S-D-RSM). In practice, S-D-RSM performs parallel updates of proximal mappings and gradient information for only a randomly selected subset of agents at each iteration. By introducing regularization terms, it effectively mitigates consensus discrepancies among distributed nodes. In contrast to conventional stochastic methods, our theoretical analysis establishes that S-D-RSM achieves global convergence without requiring diminishing step sizes or strong convexity assumptions. Furthermore, it achieves an iteration complexity of $\mathcal{O}(1/\epsilon)$ with respect to both the objective function value and the consensus error. Numerical experiments show that S-D-RSM achieves up to 2--3$\times$ speedup compared to state-of-the-art baselines, while maintaining comparable or better accuracy. These results not only validate the algorithm's theoretical guarantees but also demonstrate its effectiveness in practical tasks such as compressed sensing and empirical risk minimization.
toXiv_bot_toot
Les bagnolards en PLS:
une limitation de vitesse Š 120 km/h sur les autoroutes allemandes pourrait réduire d'un tiers le nombre de morts.
#sécuritéroutière #Allemagne
Forum blijft liegen over de bijdrage van NL aan de opwarming, ook met De Vos ipv Baudet. #apb
bron (deze factcheck is dus al van 2019!): https://nos.nl/nieuwsuur/artikel/22757