2025-08-25 09:05:35
The role of spatial perception in auditory looming bias: neurobehavioral evidence from impossible ears https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1645936/full
The role of spatial perception in auditory looming bias: neurobehavioral evidence from impossible ears https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1645936/full
Sex-based Bias Inherent in the Dice Similarity Coefficient: A Model Independent Analysis for Multiple Anatomical Structures
Hartmut H\"antze, Myrthe Buser, Alessa Hering, Lisa C. Adams, Keno K. Bressem
https://arxiv.org/abs/2509.19778
Probing Gender Bias in Multilingual LLMs: A Case Study of Stereotypes in Persian
Ghazal Kalhor, Behnam Bahrak
https://arxiv.org/abs/2509.20168 https://arxi…
Non-equilibrium Dynamics of Two-level Systems directly after Cryogenic Alternating Bias
V. Iaia, E. S. Joseph, S. Im, N. Hagopian, S. O'Kelley, C. Kim, N. Materise, S. Patra, V. Lordi, M. A. Eriksson, P. M. Voyles, K. G. Ray, Y. J. Rosen
https://arxiv.org/abs/2509.19223
Another shot across the bow against freedom and fairness in the US: https://www.theverge.com/news/713587/paramount-skydance-merger-approved-fcc-speech-dei-bias
A bias test for heteroscedastic linear least-squares regression
Eric Blankmeyer
https://arxiv.org/abs/2508.15969 https://arxiv.org/pdf/2508.15969
PediatricsMQA: a Multi-modal Pediatrics Question Answering Benchmark
Adil Bahaj, Mounir Ghogho
https://arxiv.org/abs/2508.16439 https://arxiv.org/pdf/2508.…
KI-Update kompakt: LLMs für Malware, Anti-Human-Bias, Sutton, Chatbots
Das "KI-Update" liefert werktäglich eine Zusammenfassung der wichtigsten KI-Entwicklungen.
https://www.
FERA: Foil Fencing Referee Assistant Using Pose-Based Multi-Label Move Recognition and Rule Reasoning
Ziwen Chen, Zhong Wang
https://arxiv.org/abs/2509.18527 https://
Applications and Challenges of Fairness APIs in Machine Learning Software
Ajoy Das, Gias Uddin, Shaiful Chowdhury, Mostafijur Rahman Akhond, Hadi Hemmati
https://arxiv.org/abs/2508.16377
Text Takes Over: A Study of Modality Bias in Multimodal Intent Detection
Ankan Mullick, Saransh Sharma, Abhik Jana, Pawan Goyal
https://arxiv.org/abs/2508.16122 https://
AetherCode: Evaluating LLMs' Ability to Win In Premier Programming Competitions
Zihan Wang, Jiaze Chen, Zhicheng Liu, Markus Mak, Yidi Du, Geonsik Moon, Luoqi Xu, Aaron Tua, Kunshuo Peng, Jiayi Lu, Mingfei Xia, Boqian Zou, Chenyang Ran, Guang Tian, Shoutai Zhu, Yeheng Duan, Zhenghui Kang, Zhenxing Lin, Shangshu Li, Qiang Luo, Qingshen Long, Zhiyong Chen, Yihan Xiao, Yurong Wu, Daoguang Zan, Yuyi Fu, Mingxuan Wang, Ming Ding
DoubleGen: Debiased Generative Modeling of Counterfactuals
Alex Luedtke, Kenji Fukumizu
https://arxiv.org/abs/2509.16842 https://arxiv.org/pdf/2509.16842…
Bias in the Picture: Benchmarking VLMs with Social-Cue News Images and LLM-as-Judge Assessment
Aravind Narayanan, Vahid Reza Khazaie, Shaina Raza
https://arxiv.org/abs/2509.19659
Adaptive User Interest Modeling via Conditioned Denoising Diffusion For Click-Through Rate Prediction
Qihang Zhao, Xiaoyang Zheng, Ben Chen, Zhongbo Sun, Chenyi Lei
https://arxiv.org/abs/2509.19876
Ensuring Reliable Participation in Subjective Video Quality Tests Across Platforms
Babak Naderi, Ross Cutler
https://arxiv.org/abs/2509.20001 https://arxiv…
#SteadySupporter
Wie neutral sind KI-Systeme bei der medizinischen Diagnostik?
Eine neue Studie zeigt, dass selbst auf Expertenniveau arbeitende Systeme #Krankheiten übersehen und dabei marginalisierte Gruppen benachteiligen können.
Tree-based methods for length-biased survival data
Jinwoo Lee, Jiyu Sun, Hyunwoo Lee, Donghwan Lee
https://arxiv.org/abs/2508.16312 https://arxiv.org/pdf/2…
The Pareto Frontier of Resilient Jet Tagging
Rikab Gambhir, Matt LeBlanc, Yuanchen Zhou
https://arxiv.org/abs/2509.19431 https://arxiv.org/pdf/2509.19431…
Geometrical portrait of Multipath error propagation in GNSS Direct Position Estimation
Jihong Huang, Rong Yang, Wei Gao, Xingqun Zhan, Zheng Yao
https://arxiv.org/abs/2507.18096
Simulation-Based Inference for Direction Reconstruction of Ultra-High-Energy Cosmic Rays with Radio Arrays
Oscar Macias, Zachary Mason, Matthew Ho, Ars\`ene Ferri\`ere, Aur\'elien Benoit-L\'evy, Mat\'ias Tueros
https://arxiv.org/abs/2508.15991
Testing the Constancy of Type Ia Supernova Luminosities with Gaussian Process
Akshay Rana
https://arxiv.org/abs/2509.19494 https://arxiv.org/pdf/2509.19494…
2025 Southeast Asia Eleven Nations Influence Index Report
Wei Meng
https://arxiv.org/abs/2509.19953 https://arxiv.org/pdf/2509.19953
AJAHR: Amputated Joint Aware 3D Human Mesh Recovery
Hyunjin Cho, Giyun Choi, Jongwon Choi
https://arxiv.org/abs/2509.19939 https://arxiv.org/pdf/2509.19939…
Shanks bias in function fields
Seewoo Lee
https://arxiv.org/abs/2509.16142 https://arxiv.org/pdf/2509.16142
Evaluation-Aware Reinforcement Learning
Shripad Vilasrao Deshmukh, Will Schwarzer, Scott Niekum
https://arxiv.org/abs/2509.19464 https://arxiv.org/pdf/2509…
Uncertainty Quantification for Evaluating Machine Translation Bias
Ieva Raminta Stali\=unait\.e, Julius Cheng, Andreas Vlachos
https://arxiv.org/abs/2507.18338 https://
Survivors, Complainers, and Borderliners: Upward Bias in Online Discussions of Academic Conference Reviews
Hangxiao Zhu, Yian Yin, Yu Zhang
https://arxiv.org/abs/2509.16831 http…
Multichannel highly sensitive diamond quantum magnetometer
Atsumi Yoshimura, Ayumi Kanamoto, Naota Sekiguchi, Chikara Shinei, Masashi Miyakawa, Takashi Taniguchi, Tokuyuki Teraji, Hiroshi Abe, Shinobu Onoda, Takeshi Ohshima, Takayuki Iwasaki, Mutsuko Hatano
https://arxiv.org/abs/2509.20055
Evaluating Bias Reduction Methods in Binary Emax Model for Reliable Dose-Response Estimation
Jiangshan Zhang, Vivek Pradhan, Yuxi Zhao
https://arxiv.org/abs/2509.18459 https://
I like to play around as an anonymous commenter in online newspaper columns. If you point out the biases of #AI systems, the comment gets deleted because it is considered too polemical.
The comment was addressing an article about AI in public service and the use in refugee applications 🫣
Thirteen newsroom leaders and ethicists discuss elements of journalistic ethics, including dealing with AI, anonymous leaks, bias, lies, and audience needs (Columbia Journalism Review)
https://www.cjr.org/feature/thirteen-journ
Remote coding interviews where you have to use your own machine have so much implicit bias built into them. As I haven't had a personal OS X machine in a decade, I have to use my Linux box which leads to...interesting shenanigans.
Enhanced Survival Trees
Ruiwen Zhou, Ke Xie, Lei Liu, Zhichen Xu, Jimin Ding, Xiaogang Su
https://arxiv.org/abs/2509.18494 https://arxiv.org/pdf/2509.18494…
Bias-variance Tradeoff in Tensor Estimation
Shivam Kumar, Haotian Xu, Carlos Misael Madrid Padilla, Yuehaw Khoo, Oscar Hernan Madrid Padilla, Daren Wang
https://arxiv.org/abs/2509.17382
BiTAA: A Bi-Task Adversarial Attack for Object Detection and Depth Estimation via 3D Gaussian Splatting
Yixun Zhang, Feng Zhou, Jianqin Yin
https://arxiv.org/abs/2509.19793 http…
Bridging the gap between training and inference in LM-based TTS models
Ruonan Zhang, Lingzhou Mu, Xixin Wu, Kai Zhang
https://arxiv.org/abs/2509.17021 https://
Replaced article(s) found for cs.CL. https://arxiv.org/list/cs.CL/new
[1/3]:
- Causally Testing Gender Bias in LLMs: A Case Study on Occupational Bias
Yuen Chen, Vethavikashini Chithrra Raghuram, Justus Mattern, Rada Mihalcea, Zhijing Jin
Replaced article(s) found for cs.AI. https://arxiv.org/list/cs.AI/new
[5/12]:
- Auto-Search and Refinement: An Automated Framework for Gender Bias Mitigation in Large Language M...
Yue Xu, Chengyan Fu, Li Xiong, Sibei Yang, Wenjie Wang
Reading Between the Lines: A Study of Thematic Bias in Book Recommender Systems
Nityaa Kalra, Savvina Daniil
https://arxiv.org/abs/2508.15643 https://arxiv…
EvoFormer: Learning Dynamic Graph-Level Representations with Structural and Temporal Bias Correction
Haodi Zhong, Liuxin Zou, Di Wang, Bo Wang, Zhenxing Niu, Quan Wang
https://arxiv.org/abs/2508.15378 …
Crosslisted article(s) found for cs.DL. https://arxiv.org/list/cs.DL/new
[1/1]:
- Survivors, Complainers, and Borderliners: Upward Bias in Online Discussions of Academic Conferenc...
Hangxiao Zhu, Yian Yin, Yu Zhang
Designing Psychometric Bias Measures for ChatBots: An Application to Racial Bias Measurement
Mouhacine Benosman
https://arxiv.org/abs/2509.13324 https://ar…
Fast and accurate Gaia-unWISE quasar mock catalogs from LPT and Eulerian bias
Francesco Sinigaglia, Francisco-Shu Kitaura, Mahlet Shiferaw, Ginevra Favole, Kate Storey-Fisher, Nestor Arsenov
https://arxiv.org/abs/2509.15890
The Narcissus Hypothesis:Descending to the Rung of Illusion
Riccardo Cadei, Christian Intern\`o
https://arxiv.org/abs/2509.17999 https://arxiv.org/pdf/2509…
“Developers on teams with high AI adoption complete 21% more tasks and merge 98% more pull requests, but PR review time increases 91%, revealing a critical bottleneck: human approval.“
Maybe it’s confirmation bias, but I can see that. You generate more, maybe harder to comprehend, code that still has to be double checked by people who weren’t involved in the process. That slows you down unless you ignore understanding by, you guessed it, moving fast and breaking things.
C$^2$MIL: Synchronizing Semantic and Topological Causalities in Multiple Instance Learning for Robust and Interpretable Survival Analysis
Min Cen, Zhenfeng Zhuang, Yuzhe Zhang, Min Zeng, Baptiste Magnier, Lequan Yu, Hong Zhang, Liansheng Wang
https://arxiv.org/abs/2509.20152
An investigation finds rampant caste bias in ChatGPT and Sora; a researcher also finds caste bias in Sarvam AI, which touts itself as a sovereign AI for India (Nilesh Christopher/MIT Technology Review)
https://www.technologyreview.com/2025/10/01/1124621/openai-in…
$\Delta_T$ Noise as a Robust Diagnostic for Chiral, Helical and Trivial Edge Modes
Sachiraj Mishra, Colin Benjamin
https://arxiv.org/abs/2509.16747 https://
Position Bias Mitigates Position Bias:Mitigate Position Bias Through Inter-Position Knowledge Distillation
Yifei Wang, Feng Xiong, Yong Wang, Linjing Li, Xiangxiang Chu, Daniel Dajun Zeng
https://arxiv.org/abs/2508.15709
Surprise (non)
"Les outils d'intelligence artificielle utilisés par les médecins risquent d'entraîner une dégradation de l'état de santé des femmes et des minorités ethniques.
En effet, de plus en plus d'études montrent que de nombreux modèles de langage simplifiés minimisent les symptômes de ces patients."
#IA
Mitigating Strategy-Selection Bias in Reasoning for More Effective Test-Time Scaling
Zongqian Wu, Baoduo Xu, Tianyu Li, Zhu Sun, Xiaofeng Zhu, Lei Feng
https://arxiv.org/abs/2509.17905
Evidence Backs Trump on Higher Ed's Bias (Wall Street Journal)
https://www.wsj.com/opinion/evidence-backs-trump-on-higher-eds-bias-politics-13d4fec0
http://www.memeorandum.com/250813/p76#a250813p76
Multi-state Models For Modeling Disease Histories Based On Longitudinal Data
Simon Wiegrebe, Johannes Piller, Mathias Gorski, Merle Behr, Helmut K\"uchenhoff, Iris M. Heid, Andreas Bender
https://arxiv.org/abs/2509.19956
LoCaL: Countering Surface Bias in Code Evaluation Metrics
Simantika Bhattacharjee Dristi, Matthew B. Dwyer
https://arxiv.org/abs/2509.15397 https://arxiv.o…
MoTiC: Momentum Tightness and Contrast for Few-Shot Class-Incremental Learning
Zeyu He, Shuai Huang, Yuwu Lu, Ming Zhao
https://arxiv.org/abs/2509.19664 https://
Power Spectral Density Estimation via Universal Truncated Order Statistics Filtering
David Campos Anchieta, John R. Buck
https://arxiv.org/abs/2509.16359 https://
BEFT: Bias-Efficient Fine-Tuning of Language Models
Baichuan Huang, Ananth Balashankar, Amir Aminifar
https://arxiv.org/abs/2509.15974 https://arxiv.org/pd…
Augmenting Limited and Biased RCTs through Pseudo-Sample Matching-Based Observational Data Fusion Method
Kairong Han, Weidong Huang, Taiyang Zhou, Peng Zhen, Kun Kuang
https://arxiv.org/abs/2509.18148 …
Bias is a Math Problem, AI Bias is a Technical Problem: 10-year Literature Review of AI/LLM Bias Research Reveals Narrow [Gender-Centric] Conceptions of 'Bias', and Academia-Industry Gap
Sourojit Ghosh, Kyra Wilson
https://arxiv.org/abs/2508.11067
Improving Fairness in Graph Neural Networks via Counterfactual Debiasing
Zengyi Wo, Chang Liu, Yumeng Wang, Minglai Shao, Wenjun Wang
https://arxiv.org/abs/2508.14683 https://…
State of Abdominal CT Datasets: A Critical Review of Bias, Clinical Relevance, and Real-world Applicability
Saeide Danaei, Zahra Dehghanian, Elahe Meftah, Nariman Naderi, Seyed Amir Ahmad Safavi-Naini, Faeze Khorasanizade, Hamid R. Rabiee
https://arxiv.org/abs/2508.13626
AnchoredAI: Contextual Anchoring of AI Comments Improves Writer Agency and Ownership
Martin Lou, Jackie Crowley, Samuel Dodson, Dongwook Yoon
https://arxiv.org/abs/2509.16128 ht…
Replaced article(s) found for cs.CL. https://arxiv.org/list/cs.CL/new
[1/3]:
- Prompting Techniques for Reducing Social Bias in LLMs through System 1 and System 2 Cognitive Pro...
Mahammed Kamruzzaman, Gene Louis Kim
How the outrage over Jimmy Kimmel's remarks on Charlie Kirk ballooned, starting with one X user, who monitors late night shows for liberal bias, posting a clip (Stuart A. Thompson/New York Times)
https://www.nytimes.com/2025/09/19/technology/kimmel-carr-outr…
Ethical Considerations of Large Language Models in Game Playing
Qingquan Zhang, Yuchen Li, Bo Yuan, Julian Togelius, Georgios N. Yannakakis, Jialin Liu
https://arxiv.org/abs/2508.16065
Estimation-Theoretic Bias Reduction for Oscillometric Blood Pressure Readings
Masoud Nateghi, Reza Sameni
https://arxiv.org/abs/2508.15687 https://arxiv.or…
In response to Elon Musk's claims that the App Store favors the ChatGPT app, Apple says the App Store "is designed to be fair and free of bias" (Mark Gurman/@markgurman)
https://x.com/markgurman/status/1955383759853007198
Trumps anti-woke-Verordnung: Meta arbeitet mit rechtem Influencer
Um den vermeintlich woken Bias aus KI-Anwendungen zu bekommen, arbeitet Meta nun mit dem konservativen Robby Starbuck zusammen.
https://www.…
Assessing Trustworthiness of AI Training Dataset using Subjective Logic -- A Use Case on Bias
Koffi Ismael Ouattara, Ioannis Krontiris, Theo Dimitrakos, Frank Kargl
https://arxiv.org/abs/2508.13813
Confirmation Bias as a Cognitive Resource in LLM-Supported Deliberation
Sander de Jong, Rune M{\o}berg Jacobsen, Niels van Berkel
https://arxiv.org/abs/2509.14824 https://
Investigating Bias: A Multilingual Pipeline for Generating, Solving, and Evaluating Math Problems with LLMs
Mariam Mahran, Katharina Simbeck
https://arxiv.org/abs/2509.17701 htt…
Where does non-Universality in Assembly Bias come from?
Charuhas Shiveshwarkar, Marilena Loverde, Christopher M. Hirata, Drew Jamieson
https://arxiv.org/abs/2508.11798 https://
LLM-empowered Dynamic Prompt Routing for Vision-Language Models Tuning under Long-Tailed Distributions
Yongju Jia, Jiarui Ma, Xiangxian Li, Baiqiao Zhang, Xianhui Cao, Juan Liu, Yulong Bian
https://arxiv.org/abs/2508.15688
A Comprehensive Evaluation of the Sensitivity of Density-Ratio Estimation Based Fairness Measurement in Regression
Abdalwahab Almajed, Maryam Tabar, Peyman Najafirad
https://arxiv.org/abs/2508.14576
How built environment shapes cycling experience: A multi-scale review in historical urban contexts
Haining Ding, Chenxi Wang, Michal Gath-Morad
https://arxiv.org/abs/2509.15657 …
PC-Sampler: Position-Aware Calibration of Decoding Bias in Masked Diffusion Models
Pengcheng Huang, Shuhao Liu, Zhenghao Liu, Yukun Yan, Shuo Wang, Zulong Chen, Tong Xiao
https://arxiv.org/abs/2508.13021
BSI veröffentlicht Whitepaper zum Bias in der KI
Wenn sich KI-Systeme nicht so verhalten, wie erwünscht, stecken oft Verzerrungen in den Daten dahinter. Das BSI erklärt, wie man den Bias im System erkennt.
https://www.
Design of a Gm-C Dynamic Amplifier with High Linearity and High Temperature and Power Supply Voltage Stability
Jinkun Yang, Pengbin Xu
https://arxiv.org/abs/2508.14637 https://
Fairness for the People, by the People: Minority Collective Action
Omri Ben-Dov, Samira Samadi, Amartya Sanyal, Alexandru \c{T}ifrea
https://arxiv.org/abs/2508.15374 https://
Who Gets the Mic? Investigating Gender Bias in the Speaker Assignment of a Speech-LLM
Dariia Puhach, Amir H. Payberah, \'Eva Sz\'ekely
https://arxiv.org/abs/2508.13603 h…
High-Frequency First: A Two-Stage Approach for Improving Image INR
Sumit Kumar Dam, Mrityunjoy Gain, Eui-Nam Huh, Choong Seon Hong
https://arxiv.org/abs/2508.15582 https://
Combating Homelessness Stigma with LLMs: A New Multi-Modal Dataset for Bias Detection
Jonathan A. Karr Jr., Benjamin F. Herbst, Ting Hua, Matthew Hauenstein, Georgina Curto, Nitesh V. Chawla
https://arxiv.org/abs/2508.13187
Sequential Confirmatory Factor Analysis: A Novel Approach to Latent Variable Measurement
Zachary Esses Johnson
https://arxiv.org/abs/2508.15611 https://arx…
REFER: Mitigating Bias in Opinion Summarisation via Frequency Framed Prompting
Nannan Huang, Haytham M. Fayek, Xiuzhen Zhang
https://arxiv.org/abs/2509.15723 https://
Noch einige der zuletzt hier besonders häufig geteilten #News:
Trumps anti-woke-Verordnung: Meta arbeitet mit rechtem Influencer
When Audio and Text Disagree: Revealing Text Bias in Large Audio-Language Models
Cheng Wang, Gelei Deng, Xianglin Yang, Han Qiu, Tianwei Zhang
https://arxiv.org/abs/2508.15407 h…
Estimating systematic errors in Bayesian inversion using transport maps
Maren Casfor, Philipp Trunschke, Sebastian Heidenreich, Nando Hegemann
https://arxiv.org/abs/2509.16116 h…
A Race Bias Free Face Aging Model for Reliable Kinship Verification
Ali Nazari, Bardiya Kariminia, Mohsen Ebrahimi Moghaddam
https://arxiv.org/abs/2509.15177 https://
Adversarial Hospital-Invariant Feature Learning for WSI Patch Classification
Mengliang Zhang, Jacob M. Luber
https://arxiv.org/abs/2508.14779 https://arxiv…
Mitigating Strategy Preference Bias in Emotional Support Conversation via Uncertainty Estimations
Yougen Zhou, Qin Chen, Ningning Zhou, Jie Zhou, Xingjiao Wu, Liang He
https://arxiv.org/abs/2509.12661 …
Sycophancy under Pressure: Evaluating and Mitigating Sycophantic Bias via Adversarial Dialogues in Scientific QA
Kaiwei Zhang, Qi Jia, Zijian Chen, Wei Sun, Xiangyang Zhu, Chunyi Li, Dandan Zhu, Guangtao Zhai
https://arxiv.org/abs/2508.13743
Measuring Gender Bias in Job Title Matching for Grammatical Gender Languages
Laura Garc\'ia-Sardi\~na, Hermenegildo Fabregat, Daniel Deniz, Rabih Zbib
https://arxiv.org/abs/2509.13803
Inductive Bias Extraction and Matching for LLM Prompts
Christian M. Angel, Francis Ferraro
https://arxiv.org/abs/2508.10295 https://arxiv.org/pdf/2508.1029…
BIPOLAR: Polarization-based granular framework for LLM bias evaluation
Martin Pavl\'i\v{c}ek, Tom\'a\v{s} Filip, Petr Sos\'ik
https://arxiv.org/abs/2508.11061 https:…
Fair-GPTQ: Bias-Aware Quantization for Large Language Models
Irina Proskurina, Guillaume Metzler, Julien Velcin
https://arxiv.org/abs/2509.15206 https://ar…
Analysing Moral Bias in Finetuned LLMs through Mechanistic Interpretability
Bianca Raimondi, Daniela Dalbagno, Maurizio Gabbrielli
https://arxiv.org/abs/2510.12229 https://