
2025-09-12 10:09:59
ReBaNO: Reduced Basis Neural Operator Mitigating Generalization Gaps and Achieving Discretization Invariance
Haolan Zheng, Yanlai Chen, Jiequn Han, Yue Yu
https://arxiv.org/abs/2509.09611
ReBaNO: Reduced Basis Neural Operator Mitigating Generalization Gaps and Achieving Discretization Invariance
Haolan Zheng, Yanlai Chen, Jiequn Han, Yue Yu
https://arxiv.org/abs/2509.09611
Nuclear Mass Predictions Using a Neural Network with Additive Gaussian Process Regression-Optimized Activation Functions
H. X. Liu, S. Manzhos, X. H. Wu
https://arxiv.org/abs/2509.08314
20-GHz bandwidth optical activation function based on a semiconductor laser
Hai-Fei Guo, Zheng-Can Sun, Yi-Wei Shen, Rui-Qian Li, Xing Li, Cheng Wang
https://arxiv.org/abs/2507.00468
Learning quadratic neural networks in high dimensions: SGD dynamics and scaling laws
G\'erard Ben Arous, Murat A. Erdogdu, N. Mert Vural, Denny Wu
https://arxiv.org/abs/2508.03688
Novel Complex-Valued Hopfield Neural Networks with Phase and Magnitude Quantization
Garimella Ramamurthy, Marcos Eduardo Valle, Tata Jagannadha Swamy
https://arxiv.org/abs/2507.00461
Beyond ReLU: How Activations Affect Neural Kernels and Random Wide Networks
David Holzm\"uller, Max Sch\"olpple
https://arxiv.org/abs/2506.22429 …
Adiabatic Capacitive Neuron: An Energy-Efficient Functional Unit for Artificial Neural Networks
Sachin Maheshwari, Mike Smart, Himadri Singh Raghav, Themis Prodromakis, Alexander Serb
https://arxiv.org/abs/2507.00831
Tangma: A Tanh-Guided Activation Function with Learnable Parameters
Shreel Golwala
https://arxiv.org/abs/2507.10560 https://arxiv.org…
Activated Backstepping with Control Barrier Functions for the Safe Navigation of Automated Vehicles
Laszlo Gacsi, Max H. Cohen, Tamas G. Molnar
https://arxiv.org/abs/2508.20822 …
Genericity of Polyak-Lojasiewicz Inequalities for Entropic Mean-Field Neural ODEs
Samuel Daudin, Fran\c{c}ois Delarue
https://arxiv.org/abs/2507.08486 http…
Molecular Tools for Non-Planar Surface Chemistry
Taleana Huff, Brandon Blue, Terry McCallum, Mathieu Morin, Damian G. Allis, Rafik Addou, Jeremy Barton, Adam Bottomley, Doreen Cheng, Nina M. \'Culum, Michael Drew, Tyler Enright, Alan T. K. Godfrey, Ryan Groome, Aru J. Hill, Alex Inayeh, Matthew R. Kennedy, Robert J. Kirby, Mykhaylo Krykunov, Sam Lilak, Hadiya Ma, Cameron J. Mackie, Oliver MacLean, Jonathan Myall, Ryan Plumadore, Adam Powell, Henry Rodriguez, Luis Sandoval, Marc Sav…
Solving Approximation Tasks with Greedy Deep Kernel Methods
Marian Klink, Tobias Ehring, Robin Herkert, Robin Lautenschlager, Dominik G\"oddeke, Bernard Haasdonk
https://arxiv.org/abs/2508.08759
APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
Ravin Kumar
https://arxiv.org/abs/2507.14270 https://
Emergence of Quantised Representations Isolated to Anisotropic Functions
George Bird
https://arxiv.org/abs/2507.12070 https://arxiv.o…
On the role of non-linear latent features in bipartite generative neural networks
Tony Bonnaire, Giovanni Catania, Aur\'elien Decelle, Beatriz Seoane
https://arxiv.org/abs/2506.10552
Finite-Dimensional Gaussian Approximation for Deep Neural Networks: Universality in Random Weights
Krishnakumar Balasubramanian, Nathan Ross
https://arxiv.org/abs/2507.12686