
2025-08-20 10:16:50
Timestep-Compressed Attack on Spiking Neural Networks through Timestep-Level Backpropagation
Donghwa Kang, Doohyun Kim, Sang-Ki Ko, Jinkyu Lee, Hyeongboo Baek, Brent ByungHoon Kang
https://arxiv.org/abs/2508.13812
Timestep-Compressed Attack on Spiking Neural Networks through Timestep-Level Backpropagation
Donghwa Kang, Doohyun Kim, Sang-Ki Ko, Jinkyu Lee, Hyeongboo Baek, Brent ByungHoon Kang
https://arxiv.org/abs/2508.13812
Training nonlinear optical neural networks with Scattering Backpropagation
Nicola Dal Cin, Florian Marquardt, Clara C. Wanjura
https://arxiv.org/abs/2508.11750 https://
A Self-Ensemble Inspired Approach for Effective Training of Binary-Weight Spiking Neural Networks
Qingyan Meng, Mingqing Xiao, Zhengyu Ma, Huihui Zhou, Yonghong Tian, Zhouchen Lin
https://arxiv.org/abs/2508.12609
Crosslisted article(s) found for cond-mat.mes-hall. https://arxiv.org/list/cond-mat.mes-hall/new
[1/1]:
- Training nonlinear optical neural networks with Scattering Backpropagation
Nicola Dal Cin, Florian Marquardt, Clara C. Wanjura
StableTracker: Learning to Stably Track Target via Differentiable Simulation
Fanxing Li, Shengyang Wang, Fangyu Sun, Shuyu Wu, Dexin Zuo, Wenxian Yu, Danping Zou
https://arxiv.org/abs/2509.14147
Crosslisted article(s) found for cond-mat.dis-nn. https://arxiv.org/list/cond-mat.dis-nn/new
[1/1]:
- Training nonlinear optical neural networks with Scattering Backpropagation
Nicola Dal Cin, Florian Marquardt, Clara C. Wanjura
Biologically Plausible Online Hebbian Meta-Learning: Two-Timescale Local Rules for Spiking Neural Brain Interfaces
Sriram V. C. Nallani, Gautham Ramachandran, Sahil S. Shah
https://arxiv.org/abs/2509.14447
Noise-Level Diffusion Guidance: Well Begun is Half Done
Harvey Mannering, Zhiwu Huang, Adam Prugel-Bennett
https://arxiv.org/abs/2509.13936 https://arxiv.o…
Reshaping the Forward-Forward Algorithm with a Similarity-Based Objective
James Gong, Raymond Luo, Emma Wang, Leon Ge, Bruce Li, Felix Marattukalam, Waleed Abdulla
https://arxiv.org/abs/2509.08697
A High-order Backpropagation Algorithm for Neural Stochastic Differential Equation Model
Daili Sheng, Minghui Song, Xiang Peng, Xuanqi Dong
https://arxiv.org/abs/2509.06292 http…
Bio-Inspired Artificial Neural Networks based on Predictive Coding
Davide Casnici, Charlotte Frenkel, Justin Dauwels
https://arxiv.org/abs/2508.08762 https://
Forward-Forward Autoencoder Architectures for Energy-Efficient Wireless Communications
Daniel Seifert, Onur G\"unl\"u, Rafael F. Schaefer
https://arxiv.org/abs/2510.11418
End-to-end Training of High-Dimensional Optimal Control with Implicit Hamiltonians via Jacobian-Free Backpropagation
Eric Gelphman, Deepanshu Verma, Nicole Tianjiao Yang, Stanley Osher, Samy Wu Fung
https://arxiv.org/abs/2510.00359
Backpropagation in unstable diffusions
Angxiu Ni
https://arxiv.org/abs/2507.21497 https://arxiv.org/pdf/2507.21497
Replaced article(s) found for cs.AI. https://arxiv.org/list/cs.AI/new
[5/9]:
- Stochastic Layer-wise Learning: Scalable and Efficient Alternative to Backpropagation
Bojian Yin, Federico Corradi
A Biologically Interpretable Cognitive Architecture for Online Structuring of Episodic Memories into Cognitive Maps
E. A. Dzhivelikian, A. I. Panov
https://arxiv.org/abs/2510.03286
Backpropagation-Free Test-Time Adaptation via Probabilistic Gaussian Alignment
Youjia Zhang, Youngeun Kim, Young-Geun Choi, Hongyeob Kim, Huiling Liu, Sungeun Hong
https://arxiv.org/abs/2508.15568
The Enduring Dominance of Deep Neural Networks: A Critical Analysis of the Fundamental Limitations of Quantum Machine Learning and Spiking Neural Networks
Takehiro Ishikawa
https://arxiv.org/abs/2510.08591
PALQO: Physics-informed Model for Accelerating Large-scale Quantum Optimization
Yiming Huang, Yajie Hao, Jing Zhou, Xiao Yuan, Xiaoting Wang, Yuxuan Du
https://arxiv.org/abs/2509.20733
Over-Barrier Ionization Dynamics Studied by Backpropagation
Yongzhe Ma, Qingcao Liu, Hongcheng Ni, Jian Wu
https://arxiv.org/abs/2509.02026 https://arxiv.o…
Learning Polynomial Activation Functions for Deep Neural Networks
Linghao Zhang, Jiawang Nie, Tingting Tang
https://arxiv.org/abs/2510.03682 https://arxiv.…
Partial Parameter Updates for Efficient Distributed Training
Anastasiia Filippova, Angelos Katharopoulos, David Grangier, Ronan Collobert
https://arxiv.org/abs/2509.22418 https:…
When Pipelined In-Memory Accelerators Meet Spiking Direct Feedback Alignment: A Co-Design for Neuromorphic Edge Computing
Haoxiong Ren, Yangu He, Kwunhang Wong, Rui Bao, Ning Lin, Zhongrui Wang, Dashan Shang
https://arxiv.org/abs/2507.15603
Full Integer Arithmetic Online Training for Spiking Neural Networks
Ismael Gomez, Guangzhi Tang
https://arxiv.org/abs/2509.06636 https://arxiv.org/pdf/2509…
Replaced article(s) found for quant-ph. https://arxiv.org/list/quant-ph/new
[1/2]:
- Backpropagation scaling in parameterised quantum circuits
Joseph Bowles, David Wierichs, Chae-Yeun Park
Trainable Joint Time-Vertex Fractional Fourier Transform
Ziqi Yan, Zhichao Zhang
https://arxiv.org/abs/2507.21527 https://arxiv.org/pdf/2507.21527
All-optical classification of real biomedical cell images using a diffractive neural network: a simulation study
Norihide Sagami, Yueyun Weng, Cheng Lei, Ryosuke Oketani, Kotaro Hiramatsu
https://arxiv.org/abs/2509.00370
Predictive Coding-based Deep Neural Network Fine-tuning for Computationally Efficient Domain Adaptation
Matteo Cardoni, Sam Leroux
https://arxiv.org/abs/2509.20269 https://
Game-Theoretic Gradient Control for Robust Neural Network Training
Maria Zaitseva, Ivan Tomilov, Natalia Gusarova
https://arxiv.org/abs/2507.19143 https://…
Eig-PIELM: A Mesh-Free Approach for Efficient Eigen-Analysis with Physics-Informed Extreme Learning Machines
Rishi Mishra, Smriti, Ganapathy Krishnamurthi, Balaji Srinivasan, Sundararajan Natarajan
https://arxiv.org/abs/2508.15343
Riemannian Optimization on Tree Tensor Networks with Application in Machine Learning
Marius Willner, Marco Trenti, Dirk Lebiedz
https://arxiv.org/abs/2507.21726 https://
Scaling Equilibrium Propagation to Deeper Neural Network Architectures
Sankar Vinayak. E. P, Gopalakrishnan Srinivasan
https://arxiv.org/abs/2509.26003 https://
DelRec: learning delays in recurrent spiking neural networks
Alexandre Queant, Ulysse Ran\c{c}on, Benoit R Cottereau, Timoth\'ee Masquelier
https://arxiv.org/abs/2509.24852 …
Biologically Plausible Learning via Bidirectional Spike-Based Distillation
Changze Lv, Yifei Wang, Yanxun Zhang, Yiyang Lu, Jingwen Xu, Di Yu, Xin Du, Xuanjing Huang, Xiaoqing Zheng
https://arxiv.org/abs/2509.20284