How popular media gets love wrong
Okay, so what exactly are the details of the "engineered" model of love from my previous post? I'll try to summarize my thoughts and the experiences they're built on.
1. "Love" can be be thought of like a mechanism that's built by two (or more) people. In this case, no single person can build the thing alone, to work it needs contributions from multiple people (I suppose self-love might be an exception to that). In any case, the builders can intentionally choose how they build (and maintain) the mechanism, they can build it differently to suit their particular needs/wants, and they will need to maintain and repair it over time to keep it running. It may need winding, or fuel, or charging plus oil changes and bolt-tightening, etc.
2. Any two (or more) people can choose to start building love between them at any time. No need to "find your soulmate" or "wait for the right person." Now the caveat is that the mechanism is difficult to build and requires lots of cooperation, so there might indeed be "wrong people" to try to build love with. People in general might experience more failures than successes. The key component is slowly-escalating shared commitment to the project, which is negotiated between the partners so that neither one feels like they've been left to do all the work themselves. Since it's a big scary project though, it's very easy to decide it's too hard and give up, and so the builders need to encourage each other and pace themselves. The project can only succeed if there's mutual commitment, and that will certainly require compromise (sometimes even sacrifice, though not always). If the mechanism works well, the benefits (companionship; encouragement; praise; loving sex; hugs; etc.) will be well worth the compromises you make to build it, but this isn't always the case.
3. The mechanism is prone to falling apart if not maintained. In my view, the "fire" and "appeal" models of love don't adequately convey the need for this maintenance and lead to a lot of under-maintained relationships many of which fall apart. You'll need to do things together that make you happy, do things that make your partner happy (in some cases even if they annoy you, but never in a transactional or box-checking way), spend time with shared attention, spend time alone and/or apart, reassure each other through words (or deeds) of mutual beliefs (especially your continued commitment to the relationship), do things that comfort and/or excite each other physically (anywhere from hugs to hand-holding to sex) and probably other things I'm not thinking of. Not *every* relationship needs *all* of these maintenance techniques, but I think most will need most. Note especially that patriarchy teaches men that they don't need to bother with any of this, which harms primarily their romantic partners but secondarily them as their relationships fail due to their own (cultivated-by-patriarchy) incompetence. If a relationship evolves to a point where one person is doing all the maintenance (& improvement) work, it's been bent into a shape that no longer really qualifies as "love" in my book, and that's super unhealthy.
4. The key things to negotiate when trying to build a new love are first, how to work together in the first place, and how to be comfortable around each others' habits (or how to change those habits). Second, what level of commitment you have right now, and what how/when you want to increase that commitment. Additionally, I think it's worth checking in about what you're each putting into and getting out of the relationship, to ensure that it continues to be positive for all participants. To build a successful relationship, you need to be able to incrementally increase the level of commitment to one that you're both comfortable staying at long-term, while ensuring that for both partners, the relationship is both a net benefit and has manageable costs (those two things are not the same). Obviously it's not easy to actually have conversations about these things (congratulations if you can just talk about this stuff) because there's a huge fear of hearing an answer that you don't want to hear. I think the range of discouraging answers which actually spell doom for a relationship is smaller than people think and there's usually a reasonable "shoulder" you can fall into where things aren't on a good trajectory but could be brought back into one, but even so these conversations are scary. Still, I think only having honest conversations about these things when you're angry at each other is not a good plan. You can also try to communicate some of these things via non-conversational means, if that feels safer, and at least being aware that these are the objectives you're pursuing is probably helpful.
I'll post two more replies here about my own experiences that led me to this mental model and trying to distill this into advice, although it will take me a moment to get to those.
#relationships #love
Using Tactile Charts to Support Comprehension and Learning of Complex Visualizations for Blind and Low-Vision Individuals
Tingying He, Maggie McCracken, Daniel Hajas, Sarah Creem-Regehr, Alexander Lex
https://arxiv.org/abs/2507.21462
Why AI can't possibly make you more productive; long
#AI and "productivity", some thoughts:
Edit: fixed some typos.
Productivity is a concept that isn't entirely meaningless outside the context of capitalism, but it's a concept that is heavily inflected in a capitalist context. In many uses today it effectively means "how much you can satisfy and/or exceed your boss' expectations." This is not really what it should mean: even in an anarchist utopia, people would care about things like how many shirts they can produce in a week, although in an "I'd like to voluntarily help more people" way rather than an "I need to meet this quota to earn my survival" way. But let's roll with this definition for a second, because it's almost certainly what your boss means when they say "productivity", and understanding that word in a different (even if truer) sense is therefore inherently dangerous.
Accepting "productivity" to mean "satisfying your boss' expectations," I will now claim: the use of generative AI cannot increase your productivity.
Before I dive in, it's imperative to note that the big generative models which most people think of as constituting "AI" today are evil. They are 1: pouring fuel on our burning planet, 2: psychologically strip-mining a class of data laborers who are exploited for their precarity, 3: enclosing, exploiting, and polluting the digital commons, and 4: stealing labor from broad classes of people many of whom are otherwise glad to give that labor away for free provided they get a simple acknowledgement in return. Any of these four "ethical issues" should be enough *alone* to cause everyone to simply not use the technology. These ethical issues are the reason that I do not use generative AI right now, except for in extremely extenuating circumstances. These issues are also convincing for a wide range of people I talk to, from experts to those with no computer science background. So before I launch into a critique of the effectiveness of generative AI, I want to emphasize that such a critique should be entirely unnecessary.
But back to my thesis: generative AI cannot increase your productivity, where "productivity" has been defined as "how much you can satisfy and/or exceed your boss' expectations."
Why? In fact, what the fuck? Every AI booster I've met has claimed the opposite. They've given me personal examples of time saved by using generative AI. Some of them even truly believe this. Sometimes I even believe they saved time without horribly compromising on quality (and often, your boss doesn't care about quality anyways if the lack of quality is hard to measure of doesn't seem likely to impact short-term sales/feedback/revenue). So if generative AI genuinely lets you write more emails in a shorter period of time, or close more tickets, or something else along these lines, how can I say it isn't increasing your ability to meet your boss' expectations?
The problem is simple: your boss' expectations are not a fixed target. Never have been. In virtue of being someone who oversees and pays wages to others under capitalism, your boss' game has always been: pay you less than the worth of your labor, so that they can accumulate profit and thus more capital to remain in charge instead of being forced into working for a wage themselves. Sure, there are layers of management caught in between who aren't fully in this mode, but they are irrelevant to this analysis. It matters not how much you please your manager if your CEO thinks your work is not worth the wages you are being paid. And using AI actively lowers the value of your work relative to your wages.
Why do I say that? It's actually true in several ways. The most obvious: using generative AI lowers the quality of your work, because the work it produces is shot through with errors, and when your job is reduced to proofreading slop, you are bound to tire a bit, relax your diligence, and let some mistakes through. More than you would have if you are actually doing and taking pride in the work. Examples are innumerable and frequent, from journalists to lawyers to programmers, and we laugh at them "haha how stupid to not check whether the books the AI reviewed for you actually existed!" but on a deeper level if we're honest we know we'd eventually make the same mistake ourselves (bonus game: spot the swipe-typing typos I missed in this post; I'm sure there will be some).
But using generative AI also lowers the value of your work in another much more frightening way: in this era of hype, it demonstrates to your boss that you could be replaced by AI. The more you use it, and no matter how much you can see that your human skills are really necessary to correct its mistakes, the more it appears to your boss that they should hire the AI instead of you. Or perhaps retain 10% of the people in roles like yours to manage the AI doing the other 90% of the work. Paradoxically, the *more* you get done in terms of raw output using generative AI, the more it looks to your boss as if there's an opportunity to get enough work done with even fewer expensive humans. Of course, the decision to fire you and lean more heavily into AI isn't really a good one for long-term profits and success, but the modern boss did not get where they are by considering long-term profits. By using AI, you are merely demonstrating your redundancy, and the more you get done with it, the more redundant you seem.
In fact, there's even a third dimension to this: by using generative AI, you're also providing its purveyors with invaluable training data that allows them to make it better at replacing you. It's generally quite shitty right now, but the more use it gets by competent & clever people, the better it can become at the tasks those specific people use it for. Using the currently-popular algorithm family, there are limits to this; I'm not saying it will eventually transcend the mediocrity it's entwined with. But it can absolutely go from underwhelmingly mediocre to almost-reasonably mediocre with the right training data, and data from prompting sessions is both rarer and more useful than the base datasets it's built on.
For all of these reasons, using generative AI in your job is a mistake that will likely lead to your future unemployment. To reiterate, you should already not be using it because it is evil and causes specific and inexcusable harms, but in case like so many you just don't care about those harms, I've just explained to you why for entirely selfish reasons you should not use it.
If you're in a position where your boss is forcing you to use it, my condolences. I suggest leaning into its failures instead of trying to get the most out of it, and as much as possible, showing your boss very clearly how it wastes your time and makes things slower. Also, point out the dangers of legal liability for its mistakes, and make sure your boss is aware of the degree to which any of your AI-eager coworkers are producing low-quality work that harms organizational goals.
Also, if you've read this far and aren't yet of an anarchist mindset, I encourage you to think about the implications of firing 75% of (at least the white-collar) workforce in order to make more profit while fueling the climate crisis and in most cases also propping up dictatorial figureheads in government. When *either* the AI bubble bursts *or* if the techbros get to live out the beginnings of their worker-replacement fantasies, there are going to be an unimaginable number of economically desperate people living in increasingly expensive times. I'm the kind of optimist who thinks that the resulting social crucible, though perhaps through terrible violence, will lead to deep social changes that effectively unseat from power the ultra-rich that continue to drag us all down this destructive path, and I think its worth some thinking now about what you might want the succeeding stable social configuration to look like so you can advocate towards that during points of malleability.
As others have said more eloquently, generative AI *should* be a technology that makes human lives on average easier, and it would be were it developed & controlled by humanists. The only reason that it's not, is that it's developed and controlled by terrible greedy people who use their unfairly hoarded wealth to immiserate the rest of us in order to maintain their dominance. In the long run, for our very survival, we need to depose them, and I look forward to what the term "generative AI" will mean after that finally happens.
The weird paradox of really disliking AI is that I still find myself thinking about it all the time.
I read about it, I watch videos about it, I write about it, I bring it up in conversation. And just make myself angrier in the process. And make all my algorithms show me more content about it 😓
I feel like I’m Cady in the movie Mean Girls addicted to talking about how she hated Regina George:
“I was a woman possessed. I spent about 80 percent of my time talking about Regina. And the other 20 percent of the time, I was praying for someone else to bring her up so I could talk about her more. [..] I could hear people getting bored with me. But I couldn't stop.”
Insights into User Interface Innovations from a Design Thinking Workshop at deRSE25
Maximilian Frank, Simon Lund
https://arxiv.org/abs/2508.18784 https://a…
Probe before You Talk: Towards Black-box Defense against Backdoor Unalignment for Large Language Models
Biao Yi, Tiansheng Huang, Sishuo Chen, Tong Li, Zheli Liu, Zhixuan Chu, Yiming Li
https://arxiv.org/abs/2506.16447
Just saw this:
#AI can mean a lot of things these days, but lots of the popular meanings imply a bevy of harms that I definitely wouldn't feel are worth a cute fish game. In fact, these harms are so acute that even "just" playing into the AI hype becomes its own kind of harm (it's similar to blockchain in that way).
@… noticed that the authors claim the code base is 80% AI generated, which is a red flag because people with sound moral compasses wouldn't be using AI to "help" write code in the first place. The authors aren't by some miracle people who couldn't build this app without help, in case that influences your thinking about it: they have the skills to write the code themselves, although it likely would have taken longer (but also been better).
I was more interested in the fish-classification AI, and how much it might be dependent on datacenters. Thankfully, a quick glance at the code confirms they're using ONNX and running a self-trained neural network on your device. While the exponentially-increasing energy & water demands of datacenters to support billion-parameter models are a real concern, this is not that. Even a non-AI game can burn a lot of cycles on someone's phone, and I don't think there's anything to complain about energy-wise if we're just using cycles on the end user's device as long as we're not having them keep it on for hours crunching numbers like blockchain stuff does. Running whatever stuff locally while the user is playing a game is a negligible environmental concern, unlike, say, calling out to ChatGPT where you're directly feeding datacenter demand. Since they claimed to have trained the network themselves, and since it's actually totally reasonable to make your own dataset for this and get good-enough-for-a-silly-game results with just a few hundred examples, I don't have any ethical objections to the data sourcing or training processes either. Hooray! This is finally an example of "ethical use of neutral networks" that I can hold up as an example of what people should be doing instead of the BS they are doing.
But wait... Remember what I said about feeding the AI hype being its own form of harm? Yeah, between using AI tools for coding and calling their classifier "AI" in a way that makes it seem like the same kind of thing as ChatGPT et al., they're leaning into the hype rather than helping restrain it. And that means they're causing harm. Big AI companies can point to them and say "look AI enables cute things you like" when AI didn't actually enable it. So I'm feeling meh about this cute game and won't be sharing it aside from this post. If you love the cute fish, you don't really have to feel bad for playing with it, but I'd feel bad for advertising it without a disclaimer.
I keep posting about how the AI hype bubble makes it almost impossible to have a reasonable conversation about LLMs, and it’s only when the bubble bursts that we can start thinking realistically about what if anything LLMs are actually good for in writing code.
That seems to be what Fred is getting at here: the massive gap between the hype and the reality means that the affordances of these tools fit neither the task at hand nor the tool’s own capabilities.
6/
Epstein shit and adjacent, Rural America, Poverty, Abuse
Everyone who's not a pedophile thinks pedophiles are bad, but there's this special obsessed hatred you'll find among poor rural Americans. The whole QAnon/Epstein obsession may not really make sense to folks raised in cities. Like, why do these people think *so much* about pedophiles? Why do they think that everyone in power is a pedophile? Why would the Pizzagate thing make sense to anyone? What is this unhinged shit? A lot of folks (who aren't anarchists) might be inclined to ask "why can't these people just let the cops take care of it?"
I was watching Legal Eagle's run down on the Trump Epstein thing earlier today and I woke up thinking about something I don't know if I've ever talked about. Now that I'm not in the US, I'm not at any risk of talking about it. I don't know how much I would have been before, but that's not something I'm gonna dig into right now. So let me tell you a story that might explain a few things.
I'm like 16, maybe 17. I have my license, so this girl I was dating/not dating/just friends with/whatever would regularly convince me to drive her and her friends around. I think she's like 15 at the time. Her friends are younger than her.
She tells me that there's a party we can go to where they have beer. She was told to invite her friends, so I can come too. We're going to pick her friends up (we regularly fill the VW Golf well beyond the legal limit and drive places) and head to the party.
So I take these girls, at least is 13 years old, down to this party. I'm already a bit sketched out bringing a 13 year old to a party. We drive out for a while. It's in the country. We drive down a long dark road. Three are some barrel fires and a shack. This is all a bit strange, but not too abnormal for this area. We're a little ways outside of a place called Mill City (in Oregon).
We park and walk towards the shack. This dude who looks like a rat comes up and offers us beer. He laughs and talks to the girl who invited me, "What's he doing here? You're supposed to bring your girl friends." She's like, "He's our ride." I don't remember if he offered me a beer or not.
We go over to this shed and everyone starts smoking, except me because I didn't smoke until I turned 18. The other girls start talking about the rat face dude, who's wandered over by the fire with some other guys. They're mainly teasing one of the 13 year old girls about having sex with him a bunch of times. They say he's like, 32 or something. The other girls joke about him only having sex with 13 year olds because he's too ugly to have sex with anyone closer to his own age.
Somewhere along the line it comes out that he's a cop. I never forgot that, it's absolutely seared in to my memory. I can picture his face perfectly still, decades later, and them talking about how he's a deputy, he was in his 30's, and he was having sex with a 13 year old girl. I was the only boy there, but there were a few older men. This was a chunk of the good ol' boys club of the town. I think there were a couple of cops besides the one deputy, and a judge or the mayor or some kind of big local VIP.
I kept trying to get my friend to leave, but she wanted to stay. Turns out under age drinking with cops seems like a great deal if you're a kid because you know you won't get busted. I left alone, creeped the fuck out.
I was told later that I wasn't invited and that I couldn't talk about it, I've always been good at compartmentalization, so I never did.
Decades later it occurred to me what was actually happening. I'm pretty sure that cop was giving meth he'd seized as evidence to these kids. This wasn't some one-off thing. It was regular. Who knows how many decades it went on after I left, or how many decades it had been going on before I found out. I knew this type of thing had happened at least a few times before because that's how that 13 year old girl and that 32 year old cop had hooked up in the first place.
Hearing about Epstein's MO, targeting these teenage girls from fucked up backgrounds, it's right there for me. I wouldn't be surprised if they were involved in sex trafficking of minors or some shit like that... but who would you call if you found out? Half the sheriff's department was there and the other half would cover for them.
You live in the city and shit like that doesn't happen, or at least you don't think it happens. But rural poor folks have this intuition about power and abuse. It's right there and you know it.
Trump is such a familiar character for me, because he's exactly that small town mayor or sheriff. He'll will talk about being tough on crime and hunting down pedophiles, while hanging out at a party that exists so people can fuck 8th graders.
The problem with the whole thing is that rural folks will never break the cognitive dissonance between "kill the peods" and "back the blue." They'll never go kill those cops. No, the pedos must be somewhere else. It must be the elites. It must be outsiders. It can't be the cops and good ol' boys everyone respects. It can't be the mayor who rigs the election to win every time. It can't be the "good upstanding" sheriff. Nah, it's the Clintons.
To be fair, it's probably also the Clitnons, a bunch of other politicians, billionaires, etc. Epstein was exactly who everyone thought he was, and he didn't get away with it for so long without a whole lot of really powerful help.
There are still powerful people who got away with involvement with #Epstein. #Trump is one of them, but I don't really believe that he's the only one.
#USPol #ACAB
Should we teach vibe coding? Here's why not.
Should AI coding be taught in undergrad CS education?
1/2
I teach undergraduate computer science labs, including for intro and more-advanced core courses. I don't publish (non-negligible) scholarly work in the area, but I've got years of craft expertise in course design, and I do follow the academic literature to some degree. In other words, In not the world's leading expert, but I have spent a lot of time thinking about course design, and consider myself competent at it, with plenty of direct experience in what knowledge & skills I can expect from students as they move through the curriculum.
I'm also strongly against most uses of what's called "AI" these days (specifically, generative deep neutral networks as supplied by our current cadre of techbro). There are a surprising number of completely orthogonal reasons to oppose the use of these systems, and a very limited number of reasonable exceptions (overcoming accessibility barriers is an example). On the grounds of environmental and digital-commons-pollution costs alone, using specifically the largest/newest models is unethical in most cases.
But as any good teacher should, I constantly question these evaluations, because I worry about the impact on my students should I eschew teaching relevant tech for bad reasons (and even for his reasons). I also want to make my reasoning clear to students, who should absolutely question me on this. That inspired me to ask a simple question: ignoring for one moment the ethical objections (which we shouldn't, of course; they're very stark), at what level in the CS major could I expect to teach a course about programming with AI assistance, and expect students to succeed at a more technically demanding final project than a course at the same level where students were banned from using AI? In other words, at what level would I expect students to actually benefit from AI coding "assistance?"
To be clear, I'm assuming that students aren't using AI in other aspects of coursework: the topic of using AI to "help you study" is a separate one (TL;DR it's gross value is not negative, but it's mostly not worth the harm to your metacognitive abilities, which AI-induced changes to the digital commons are making more important than ever).
So what's my answer to this question?
If I'm being incredibly optimistic, senior year. Slightly less optimistic, second year of a masters program. Realistic? Maybe never.
The interesting bit for you-the-reader is: why is this my answer? (Especially given that students would probably self-report significant gains at lower levels.) To start with, [this paper where experienced developers thought that AI assistance sped up their work on real tasks when in fact it slowed it down] (https://arxiv.org/abs/2507.09089) is informative. There are a lot of differences in task between experienced devs solving real bugs and students working on a class project, but it's important to understand that we shouldn't have a baseline expectation that AI coding "assistants" will speed things up in the best of circumstances, and we shouldn't trust self-reports of productivity (or the AI hype machine in general).
Now we might imagine that coding assistants will be better at helping with a student project than at helping with fixing bugs in open-source software, since it's a much easier task. For many programming assignments that have a fixed answer, we know that many AI assistants can just spit out a solution based on prompting them with the problem description (there's another elephant in the room here to do with learning outcomes regardless of project success, but we'll ignore this over too, my focus here is on project complexity reach, not learning outcomes). My question is about more open-ended projects, not assignments with an expected answer. Here's a second study (by one of my colleagues) about novices using AI assistance for programming tasks. It showcases how difficult it is to use AI tools well, and some of these stumbling blocks that novices in particular face.
But what about intermediate students? Might there be some level where the AI is helpful because the task is still relatively simple and the students are good enough to handle it? The problem with this is that as task complexity increases, so does the likelihood of the AI generating (or copying) code that uses more complex constructs which a student doesn't understand. Let's say I have second year students writing interactive websites with JavaScript. Without a lot of care that those students don't know how to deploy, the AI is likely to suggest code that depends on several different frameworks, from React to JQuery, without actually setting up or including those frameworks, and of course three students would be way out of their depth trying to do that. This is a general problem: each programming class carefully limits the specific code frameworks and constructs it expects students to know based on the material it covers. There is no feasible way to limit an AI assistant to a fixed set of constructs or frameworks, using current designs. There are alternate designs where this would be possible (like AI search through adaptation from a controlled library of snippets) but those would be entirely different tools.
So what happens on a sizeable class project where the AI has dropped in buggy code, especially if it uses code constructs the students don't understand? Best case, they understand that they don't understand and re-prompt, or ask for help from an instructor or TA quickly who helps them get rid of the stuff they don't understand and re-prompt or manually add stuff they do. Average case: they waste several hours and/or sweep the bugs partly under the rug, resulting in a project with significant defects. Students in their second and even third years of a CS major still have a lot to learn about debugging, and usually have significant gaps in their knowledge of even their most comfortable programming language. I do think regardless of AI we as teachers need to get better at teaching debugging skills, but the knowledge gaps are inevitable because there's just too much to know. In Python, for example, the LLM is going to spit out yields, async functions, try/finally, maybe even something like a while/else, or with recent training data, the walrus operator. I can't expect even a fraction of 3rd year students who have worked with Python since their first year to know about all these things, and based on how students approach projects where they have studied all the relevant constructs but have forgotten some, I'm not optimistic seeing these things will magically become learning opportunities. Student projects are better off working with a limited subset of full programming languages that the students have actually learned, and using AI coding assistants as currently designed makes this impossible. Beyond that, even when the "assistant" just introduces bugs using syntax the students understand, even through their 4th year many students struggle to understand the operation of moderately complex code they've written themselves, let alone written by someone else. Having access to an AI that will confidently offer incorrect explanations for bugs will make this worse.
To be sure a small minority of students will be able to overcome these problems, but that minority is the group that has a good grasp of the fundamentals and has broadened their knowledge through self-study, which earlier AI-reliant classes would make less likely to happen. In any case, I care about the average student, since we already have plenty of stuff about our institutions that makes life easier for a favored few while being worse for the average student (note that our construction of that favored few as the "good" students is a large part of this problem).
To summarize: because AI assistants introduce excess code complexity and difficult-to-debug bugs, they'll slow down rather than speed up project progress for the average student on moderately complex projects. On a fixed deadline, they'll result in worse projects, or necessitate less ambitious project scoping to ensure adequate completion, and I expect this remains broadly true through 4-6 years of study in most programs (don't take this as an endorsement of AI "assistants" for masters students; we've ignored a lot of other problems along the way).
There's a related problem: solving open-ended project assignments well ultimately depends on deeply understanding the problem, and AI "assistants" allow students to put a lot of code in their file without spending much time thinking about the problem or building an understanding of it. This is awful for learning outcomes, but also bad for project success. Getting students to see the value of thinking deeply about a problem is a thorny pedagogical puzzle at the best of times, and allowing the use of AI "assistants" makes the problem much much worse. This is another area I hope to see (or even drive) pedagogical improvement in, for what it's worth.
1/2