Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_csGT_bot@mastoxiv.page
2025-12-09 15:38:28

Replaced article(s) found for cs.GT. arxiv.org/list/cs.GT/new
[1/1]:
- Cumulative Games: Who is the current player?
Urban Larsson, Reshef Meir, Yair Zick
arxiv.org/abs/2005.06326
- Contest Design with Threshold Objectives
Edith Elkind, Abheek Ghosh, Paul W. Goldberg
arxiv.org/abs/2109.03179
- Deep Learning Meets Mechanism Design: Key Results and Some Novel Applications
V. Udaya Sankar, Vishisht Srihari Rao, Y. Narahari
arxiv.org/abs/2401.05683 mastoxiv.page/@arXiv_csGT_bot/
- Charting the Shapes of Stories with Game Theory
Daskalakis, Gemp, Jiang, Leme, Papadimitriou, Piliouras
arxiv.org/abs/2412.05747 mastoxiv.page/@arXiv_csGT_bot/
- Computing Evolutionarily Stable Strategies in Multiplayer Games
Sam Ganzfried
arxiv.org/abs/2511.20859 mastoxiv.page/@arXiv_csGT_bot/
- Autodeleveraging: Impossibilities and Optimization
Tarun Chitra
arxiv.org/abs/2512.01112 mastoxiv.page/@arXiv_csGT_bot/
- Static Pricing Guarantees for Queueing Systems
Jacob Bergquist, Adam N. Elmachtoub
arxiv.org/abs/2305.09168 mastoxiv.page/@arXiv_csDS_bot/
- Game of arrivals at a two queue network with heterogeneous customer routes
Agniv Bandyopadhyay, Sandeep Juneja
arxiv.org/abs/2310.18149 mastoxiv.page/@arXiv_csPF_bot/
- Characterization of Priority-Neutral Matching Lattices
Clayton Thomas
arxiv.org/abs/2404.02142 mastoxiv.page/@arXiv_econTH_bo
- Seven kinds of equivalent models for generalized coalition logics
Zixuan Chen, Fengkui Ju
arxiv.org/abs/2501.05466 mastoxiv.page/@arXiv_csLO_bot/
- Matching Markets Meet LLMs: Algorithmic Reasoning with Ranked Preferences
Hadi Hosseini, Samarth Khanna, Ronak Singh
arxiv.org/abs/2506.04478 mastoxiv.page/@arXiv_csAI_bot/
toXiv_bot_toot

@deprogrammaticaipsum@mas.to
2026-01-04 14:54:53

"Christopher Bishop’s 2006 book “Pattern Recognition and Machine Learning,” arguably one of the triggers of the current popularity of machine learning, is quite literally a book about applied mathematics, diving into probabilities, linear algebra, neural networks, Markov models, and combinatorics. And rightfully so; if your objective is to find a job as an engineer at OpenAI, knowing a thing or two about eigenvalues and eigenvectors is definitely going to be useful."

@seeingwithsound@mas.to
2025-11-29 12:33:10

(PhD thesis, 2024) Prototyping phosphene vision: Simulation-based optimization of visual neuroprosthetics using deep learning #BCI

@UP8@mastodon.social
2025-10-31 00:13:17

💫 Fast frequency reconstruction using Deep Learning for event recognition in ring laser data
#laser

Four time series charts showing the horizontal and vertical motion detected by both a conventional seismograph and a ring laser gyroscope that all look just about the same
@Techmeme@techhub.social
2026-01-01 16:15:29

DeepSeek researchers detail a new mHC architecture they used to train 3B, 9B, and 27B models, finding it scaled without adding significant computational burden (Vincent Chow/South China Morning Post)
scmp.com/tech/big-tech/article

@brichapman@mastodon.social
2025-11-12 16:58:01

DTO-BioFlow is using AI to analyze decades of marine biodiversity records, revealing insights that support ocean monitoring, conservation, and restoration. 💙
dto-bioflow.eu/news/using-deep

@markhburton@mstdn.social
2025-11-25 16:25:51

"AI in the guise of Machine Learning, Deep Learning, GenerativeAI (GenAI), or Large Language Models (LLMs)... can be very useful in certain application areas such as recognising or generating patterns in large data sets. However, their key drawback is that any correctness arguments will be inherently probabilistic as they are usually based on unknown data distributions and are therefore susceptible to errors (sometimes termed “hallucinations”). "

@arXiv_csCV_bot@mastoxiv.page
2025-10-15 10:49:01

Hybrid Explanation-Guided Learning for Transformer-Based Chest X-Ray Diagnosis
Shelley Zixin Shu, Haozhe Luo, Alexander Poellinger, Mauricio Reyes
arxiv.org/abs/2510.12704

@arXiv_csHC_bot@mastoxiv.page
2025-10-13 09:44:10

Investigating the Impact of Rational Dilated Wavelet Transform on Motor Imagery EEG Decoding with Deep Learning Models
Marco Siino, Giuseppe Bonomo, Rosario Sorbello, Ilenia Tinnirello
arxiv.org/abs/2510.09242

@arXiv_physicsoptics_bot@mastoxiv.page
2025-11-25 11:06:23

Experimental insights into data augmentation techniques for deep learning-based multimode fiber imaging: limitations and success
Jawaria Maqbool, M. Imran Cheema
arxiv.org/abs/2511.19072 arxiv.org/pdf/2511.19072 arxiv.org/html/2511.19072
arXiv:2511.19072v1 Announce Type: new
Abstract: Multimode fiber~(MMF) imaging using deep learning has high potential to produce compact, minimally invasive endoscopic systems. Nevertheless, it relies on large, diverse real-world medical data, whose availability is limited by privacy concerns and practical challenges. Although data augmentation has been extensively studied in various other deep learning tasks, it has not been systematically explored for MMF imaging. This work provides the first in-depth experimental and computational study on the efficacy and limitations of augmentation techniques in this field. We demonstrate that standard image transformations and conditional generative adversarial-based synthetic speckle generation fail to improve, or even deteriorate, reconstruction quality, as they neglect the complex modal interference and dispersion that results in speckle formation. To address this, we introduce a physical data augmentation method in which only organ images are digitally transformed, while their corresponding speckles are experimentally acquired via fiber. This approach preserves the physics of light-fiber interaction and enhances the reconstruction structural similarity index measure~(SSIM) by up to 17\%, forming a viable system for reliable MMF imaging under limited data conditions.
toXiv_bot_toot

@arXiv_csCR_bot@mastoxiv.page
2025-10-15 10:08:11

Attack-Specialized Deep Learning with Ensemble Fusion for Network Anomaly Detection
Nisith Dissanayake (University of Moratuwa), Uthayasanker Thayasivam (University of Moratuwa)
arxiv.org/abs/2510.12455

@arXiv_condmatmtrlsci_bot@mastoxiv.page
2025-10-13 09:48:40

Deep prior-based denoising for state-of-the-art scientific imaging and metrology
Yuichi Yokoyama, Kohei Yamagami, Yuta Sumiya, Hayaru Shouno, Masaichiro Mizumaki
arxiv.org/abs/2510.09410

@arXiv_astrophIM_bot@mastoxiv.page
2025-10-13 08:57:00

deep-REMAP: Probabilistic Parameterization of Stellar Spectra Using Regularized Multi-Task Learning
Sankalp Gilda
arxiv.org/abs/2510.09362

@arXiv_astrophSR_bot@mastoxiv.page
2025-10-14 08:28:08

Spectropolarimetric Inversion in Four Dimensions with Deep Learning (SPIn4D): II. A Physics-Informed Machine Learning Method for 3D Solar Photosphere Reconstruction
Kai E. Yang, Xudong Sun, Lucas A. Tarr, Jiayi Liu, Peter Sadowski, S. Curt Dodds, Matthias Rempel, Sarah A. Jaeggli, Thomas A. Schad, Ian Cunnyngham, Yannik Glaser, Linnea Wolniewicz

@arXiv_csDC_bot@mastoxiv.page
2025-10-13 07:39:50

Maple: A Multi-agent System for Portable Deep Learning across Clusters
Molang Wu, Zhao Zhang
arxiv.org/abs/2510.08842 arxiv.org/pdf/2510.08…

@arXiv_csRO_bot@mastoxiv.page
2025-10-14 12:36:08

NaviGait: Navigating Dynamically Feasible Gait Libraries using Deep Reinforcement Learning
Neil C. Janwani, Varun Madabushi, Maegan Tucker
arxiv.org/abs/2510.11542

@arXiv_eessSP_bot@mastoxiv.page
2025-10-15 08:27:42

A Deep Multi-Task Learning Approach to Impulsive Noise Parameter Estimation
Abdullahi Mohammad, Bdah Eya, Bassant Selim
arxiv.org/abs/2510.12179

@arXiv_condmatstatmech_bot@mastoxiv.page
2025-10-13 08:41:00

Deep Learning of the Biswas-Chatterjee-Sen Model
J. F. Silva Neto, D. S. M. Alencar, L. T. Brito, G. A. Alves, F. W. S. Lima, A. Macedo-Filho, R. S. Ferreira, T. F. A. Alves
arxiv.org/abs/2510.09446

@arXiv_csLG_bot@mastoxiv.page
2025-10-13 10:41:40

Deep Learning to Identify the Spatio-Temporal Cascading Effects of Train Delays in a High-Density Network
Vu Duc Anh Nguyen, Ziyue Li
arxiv.org/abs/2510.09350

@arXiv_astrophCO_bot@mastoxiv.page
2025-10-14 08:45:08

A Systematic Literature Review of Machine Learning Techniques for Observational Constraints in Cosmology
Luis Rojas, Sebasti\'an Espinoza, Esteban Gonz\'alez, Carlos Maldonado, Fei Luo
arxiv.org/abs/2510.09876

@arXiv_csCV_bot@mastoxiv.page
2025-10-15 10:51:21

PET Head Motion Estimation Using Supervised Deep Learning with Attention
Zhuotong Cai, Tianyi Zeng, Jiazhen Zhang, El\'eonore V. Lieffrig, Kathryn Fontaine, Chenyu You, Enette Mae Revilla, James S. Duncan, Jingmin Xin, Yihuan Lu, John A. Onofrey
arxiv.org/abs/2510.12758

@arXiv_qbioGN_bot@mastoxiv.page
2025-12-04 11:37:18

Crosslisted article(s) found for q-bio.GN. arxiv.org/list/q-bio.GN/new
[1/1]:
- Contrastive Deep Learning for Variant Detection in Wastewater Genomic Sequencing
Adele Chinda, Richmond Azumah, Hemanth Demakethepalli Venkateswara

@arXiv_csIT_bot@mastoxiv.page
2025-10-14 09:14:08

Forward-Forward Autoencoder Architectures for Energy-Efficient Wireless Communications
Daniel Seifert, Onur G\"unl\"u, Rafael F. Schaefer
arxiv.org/abs/2510.11418

@arXiv_csCR_bot@mastoxiv.page
2025-10-14 12:21:28

TDADL-IE: A Deep Learning-Driven Cryptographic Architecture for Medical Image Security
Junhua Zhou, Quanjun Li, Weixuan Li, Guang Yu, Yihua Shao, Yihang Dong, Mengqian Wang, Zimeng Li, Changwei Gong, Xuhang Chen
arxiv.org/abs/2510.11301

@arXiv_csNI_bot@mastoxiv.page
2025-10-14 10:44:08

A Flexible Multi-Agent Deep Reinforcement Learning Framework for Dynamic Routing and Scheduling of Latency-Critical Services
Vincenzo Norman Vitale, Antonia Maria Tulino, Andreas F. Molisch, Jaime Llorca
arxiv.org/abs/2510.11535

@arXiv_astrophGA_bot@mastoxiv.page
2025-10-15 09:40:32

Beyond the Brightest: A Deep Learning Approach to Identifying Major and Minor Galaxy Mergers in CANDELS at $z \sim 1$
Aimee L. Schechter, Aleksandra \'Ciprijanovi\'c, Xuejian Shen, Rebecca Nevin, Julia M. Comerford, Aaron Stemo, Laura Blecha, Austin Fraley
arxiv.org/abs/2510.12173

@arXiv_csNE_bot@mastoxiv.page
2025-10-13 08:24:30

The Enduring Dominance of Deep Neural Networks: A Critical Analysis of the Fundamental Limitations of Quantum Machine Learning and Spiking Neural Networks
Takehiro Ishikawa
arxiv.org/abs/2510.08591

@arXiv_eessAS_bot@mastoxiv.page
2025-10-15 09:09:02

DeePAQ: A Perceptual Audio Quality Metric Based On Foundational Models and Weakly Supervised Learning
Guanxin Jiang, Andreas Brendel, Pablo M. Delgado, J\"urgen Herre
arxiv.org/abs/2510.12326

@Techmeme@techhub.social
2025-12-19 18:55:53

Neural Concept, whose 3D product design software uses deep learning to help cut development times, raised a $100M Series C, bringing its total funding to $130M (Chris Metinko/Axios)
axios.com/pro/enterprise-softw

@arXiv_hepex_bot@mastoxiv.page
2025-10-14 08:53:48

dN/dx Reconstruction with Deep Learning for High-Granularity TPCs
Guang Zhao, Yue Chang, Jinxian Zhang, Linghui Wu, Huirong Qi, Xin She, Mingyi Dong, Shengsen Sun, Jianchun Wang, Yifang Wang, Chunxu Yu
arxiv.org/abs/2510.10628

@arXiv_csMA_bot@mastoxiv.page
2025-10-15 08:07:51

Heterogeneous RBCs via deep multi-agent reinforcement learning
Federico Gabriele, Aldo Glielmo, Marco Taboga
arxiv.org/abs/2510.12272 arxiv…

@arXiv_csMM_bot@mastoxiv.page
2025-10-15 07:49:01

M3ST-DTI: A multi-task learning model for drug-target interactions based on multi-modal features and multi-stage alignment
Xiangyu Li, Ran Su, Liangliang Liu
arxiv.org/abs/2510.12445

@BBC3MusicBot@mastodonapp.uk
2025-12-15 22:26:49

🇺🇦 #NowPlaying on BBCRadio3's #NightTracks
DEEP LEARNING:
🎵 Evergreen
#DEEPLEARNING

@arXiv_csPL_bot@mastoxiv.page
2025-10-13 07:44:20

Neptune: Advanced ML Operator Fusion for Locality and Parallelism on GPUs
Yifan Zhao, Egan Johnson, Prasanth Chatarasi, Vikram Adve, Sasa Misailovic
arxiv.org/abs/2510.08726

@arXiv_eessSP_bot@mastoxiv.page
2025-10-15 07:53:51

Based on Deep Neural Networks: A Machine Learning-Assisted Channel Estimation Method for MIMO Systems
Haoran He
arxiv.org/abs/2510.11891 ar…

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 13:54:45

Replaced article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[3/5]:
- Look-Ahead Reasoning on Learning Platforms
Haiqing Zhu, Tijana Zrnic, Celestine Mendler-D\"unner
arxiv.org/abs/2511.14745 mastoxiv.page/@arXiv_csLG_bot/
- Deep Gaussian Process Proximal Policy Optimization
Matthijs van der Lende, Juan Cardenas-Cartagena
arxiv.org/abs/2511.18214 mastoxiv.page/@arXiv_csLG_bot/
- Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
Akira Tamamori
arxiv.org/abs/2511.23083 mastoxiv.page/@arXiv_csLG_bot/
- xGR: Efficient Generative Recommendation Serving at Scale
Sun, Liu, Zhang, Wu, Yang, Liang, Li, Ma, Liang, Ren, Zhang, Liu, Zhang, Qian, Yang
arxiv.org/abs/2512.11529 mastoxiv.page/@arXiv_csLG_bot/
- Credit Risk Estimation with Non-Financial Features: Evidence from a Synthetic Istanbul Dataset
Atalay Denknalbant, Emre Sezdi, Zeki Furkan Kutlu, Polat Goktas
arxiv.org/abs/2512.12783 mastoxiv.page/@arXiv_csLG_bot/
- The Semantic Illusion: Certified Limits of Embedding-Based Hallucination Detection in RAG Systems
Debu Sinha
arxiv.org/abs/2512.15068 mastoxiv.page/@arXiv_csLG_bot/
- Towards Reproducibility in Predictive Process Mining: SPICE -- A Deep Learning Library
Stritzel, H\"uhnerbein, Rauch, Zarate, Fleischmann, Buck, Lischka, Frey
arxiv.org/abs/2512.16715 mastoxiv.page/@arXiv_csLG_bot/
- Differentially private Bayesian tests
Abhisek Chakraborty, Saptati Datta
arxiv.org/abs/2401.15502 mastoxiv.page/@arXiv_statML_bo
- SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning
Paul Mangold, Sergey Samsonov, Safwan Labbi, Ilya Levin, Reda Alami, Alexey Naumov, Eric Moulines
arxiv.org/abs/2402.04114
- Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?
Guiomar Pescador-Barrios, Sarah Filippi, Mark van der Wilk
arxiv.org/abs/2408.07588 mastoxiv.page/@arXiv_statML_bo
- Non-Perturbative Trivializing Flows for Lattice Gauge Theories
Mathis Gerdes, Pim de Haan, Roberto Bondesan, Miranda C. N. Cheng
arxiv.org/abs/2410.13161 mastoxiv.page/@arXiv_heplat_bo
- Dynamic PET Image Prediction Using a Network Combining Reversible and Irreversible Modules
Sun, Zhang, Xia, Sun, Chen, Yang, Liu, Zhu, Liu
arxiv.org/abs/2410.22674 mastoxiv.page/@arXiv_eessIV_bo
- Targeted Learning for Variable Importance
Xiaohan Wang, Yunzhe Zhou, Giles Hooker
arxiv.org/abs/2411.02221 mastoxiv.page/@arXiv_statML_bo
- Refined Analysis of Federated Averaging and Federated Richardson-Romberg
Paul Mangold, Alain Durmus, Aymeric Dieuleveut, Sergey Samsonov, Eric Moulines
arxiv.org/abs/2412.01389 mastoxiv.page/@arXiv_statML_bo
- Embedding-Driven Data Distillation for 360-Degree IQA With Residual-Aware Refinement
Abderrezzaq Sendjasni, Seif-Eddine Benkabou, Mohamed-Chaker Larabi
arxiv.org/abs/2412.12667 mastoxiv.page/@arXiv_csCV_bot/
- 3D Cell Oversegmentation Correction via Geo-Wasserstein Divergence
Peter Chen, Bryan Chang, Olivia A Creasey, Julie Beth Sneddon, Zev J Gartner, Yining Liu
arxiv.org/abs/2502.01890 mastoxiv.page/@arXiv_csCV_bot/
- DHP: Discrete Hierarchical Planning for Hierarchical Reinforcement Learning Agents
Shashank Sharma, Janina Hoffmann, Vinay Namboodiri
arxiv.org/abs/2502.01956 mastoxiv.page/@arXiv_csRO_bot/
- Foundation for unbiased cross-validation of spatio-temporal models for species distribution modeling
Diana Koldasbayeva, Alexey Zaytsev
arxiv.org/abs/2502.03480
- GraphCompNet: A Position-Aware Model for Predicting and Compensating Shape Deviations in 3D Printing
Juheon Lee (Rachel), Lei (Rachel), Chen, Juan Carlos Catana, Hui Wang, Jun Zeng
arxiv.org/abs/2502.09652 mastoxiv.page/@arXiv_csCV_bot/
- LookAhead Tuning: Safer Language Models via Partial Answer Previews
Liu, Wang, Luo, Yuan, Sun, Liang, Zhang, Zhou, Hooi, Deng
arxiv.org/abs/2503.19041 mastoxiv.page/@arXiv_csCL_bot/
- Constraint-based causal discovery with tiered background knowledge and latent variables in single...
Christine W. Bang, Vanessa Didelez
arxiv.org/abs/2503.21526 mastoxiv.page/@arXiv_statML_bo
toXiv_bot_toot

@arXiv_csAI_bot@mastoxiv.page
2025-10-15 10:10:21

Biased-Attention Guided Risk Prediction for Safe Decision-Making at Unsignalized Intersections
Chengyang Dong, Nan Guo
arxiv.org/abs/2510.12428

@arXiv_astrophIM_bot@mastoxiv.page
2025-10-14 10:46:38

Deep Learning in Astrophysics
Yuan-Sen Ting
arxiv.org/abs/2510.10713 arxiv.org/pdf/2510.10713

@arXiv_csSD_bot@mastoxiv.page
2025-10-14 11:06:29

SS-DPPN: A self-supervised dual-path foundation model for the generalizable cardiac audio representation
Ummy Maria Muna, Md Mehedi Hasan Shawon, Md Jobayer, Sumaiya Akter, Md Rakibul Hasan, Md. Golam Rabiul Alam
arxiv.org/abs/2510.10719

@arXiv_mathGN_bot@mastoxiv.page
2025-11-11 08:34:50

Dimensionality reduction and width of deep neural networks based on topological degree theory
Xiao-Song Yang
arxiv.org/abs/2511.06821 arxiv.org/pdf/2511.06821 arxiv.org/html/2511.06821
arXiv:2511.06821v1 Announce Type: new
Abstract: In this paper we present a mathematical framework on linking of embeddings of compact topological spaces into Euclidean spaces and separability of linked embeddings under a specific class of dimension reduction maps. As applications of the established theory, we provide some fascinating insights into classification and approximation problems in deep learning theory in the setting of deep neural networks.
toXiv_bot_toot

@arXiv_csAR_bot@mastoxiv.page
2025-10-13 08:51:20

Sequencing on Silicon: AI SoC Design for Mobile Genomics at the Edge
Sebastian Magierowski, Zhongpan Wu, Abel Beyene, Karim Hammad
arxiv.org/abs/2510.09339

@arXiv_qfinMF_bot@mastoxiv.page
2025-10-14 08:38:48

Deep Signature and Neural RDE Methods for Path-Dependent Portfolio Optimization
Ali Atiah Alzahrani
arxiv.org/abs/2510.10728 arxiv.org/pdf/…

@arXiv_csCE_bot@mastoxiv.page
2025-10-14 09:05:08

Comparative Evaluation of Neural Network Architectures for Generalizable Human Spatial Preference Prediction in Unseen Built Environments
Maral Doctorarastoo, Katherine A. Flanigan, Mario Berg\'es, Christopher McComb
arxiv.org/abs/2510.10954

@arXiv_csSE_bot@mastoxiv.page
2025-10-15 09:23:02

Enhancing Neural Code Representation with Additional Context
Huy Nguyen, Christoph Treude, Patanamon Thongtanunam
arxiv.org/abs/2510.12082

@arXiv_csCV_bot@mastoxiv.page
2025-10-15 10:48:31

EReLiFM: Evidential Reliability-Aware Residual Flow Meta-Learning for Open-Set Domain Generalization under Noisy Labels
Kunyu Peng, Di Wen, Kailun Yang, Jia Fu, Yufan Chen, Ruiping Liu, Jiamin Wu, Junwei Zheng, M. Saquib Sarfraz, Luc Van Gool, Danda Pani Paudel, Rainer Stiefelhagen
arxiv.org/abs/2510.12687

@arXiv_eessIV_bot@mastoxiv.page
2025-10-14 09:52:58

Generalisation of automatic tumour segmentation in histopathological whole-slide images across multiple cancer types
Ole-Johan Skrede, Manohar Pradhan, Maria Xepapadakis Isaksen, Tarjei Sveinsgjerd Hveem, Ljiljana Vlatkovic, Arild Nesbakken, Kristina Lindemann, Gunnar B Kristensen, Jenneke Kasius, Alain G Zeimet, Odd Terje Brustugun, Lill-Tove Rasmussen Busund, Elin H Richardsen, Erik Skaaheim Haug, Bj{\o}rn Brennhovd, Emma Rewcastle, Melinda Lillesand, Vebj{\o}rn Kvikstad, Emiel Janss…

@brichapman@mastodon.social
2025-12-16 20:21:00

Want to break into climate work but don't know where to start? Terra.do's Learning for Action fellowship might be your answer.
This 12-week program goes deep on real-world climate solutions—beyond just clean energy. You'll learn the science, explore diverse solutions, and connect with a global community, all while working full-time (6-10 hrs/week).
Financial aid available.

@arXiv_eessSP_bot@mastoxiv.page
2025-10-14 11:24:29

Channel-Aware Deep Learning for Superimposed Pilot Power Allocation and Receiver Design
Run Gu, Renjie Xie, Wei Xu, Zhaohui Yang, Kaibin Huang
arxiv.org/abs/2510.11294

@arXiv_physicsappph_bot@mastoxiv.page
2025-10-14 08:52:38

Material combination optimization for brazed ceramic-metal composites using Artificial Intelligence
Sunita Khod, Vinay Kamma, Ravi Kumar Verma, Mayank Goswami
arxiv.org/abs/2510.10128

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 13:54:35

Replaced article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[2/5]:
- The Diffusion Duality
Sahoo, Deschenaux, Gokaslan, Wang, Chiu, Kuleshov
arxiv.org/abs/2506.10892 mastoxiv.page/@arXiv_csLG_bot/
- Multimodal Representation Learning and Fusion
Jin, Ge, Xie, Luo, Song, Bi, Liang, Guan, Yeong, Song, Hao
arxiv.org/abs/2506.20494 mastoxiv.page/@arXiv_csLG_bot/
- The kernel of graph indices for vector search
Mariano Tepper, Ted Willke
arxiv.org/abs/2506.20584 mastoxiv.page/@arXiv_csLG_bot/
- OptScale: Probabilistic Optimality for Inference-time Scaling
Youkang Wang, Jian Wang, Rubing Chen, Xiao-Yong Wei
arxiv.org/abs/2506.22376 mastoxiv.page/@arXiv_csLG_bot/
- Boosting Revisited: Benchmarking and Advancing LP-Based Ensemble Methods
Fabian Akkerman, Julien Ferry, Christian Artigues, Emmanuel Hebrard, Thibaut Vidal
arxiv.org/abs/2507.18242 mastoxiv.page/@arXiv_csLG_bot/
- MolMark: Safeguarding Molecular Structures through Learnable Atom-Level Watermarking
Runwen Hu, Peilin Chen, Keyan Ding, Shiqi Wang
arxiv.org/abs/2508.17702 mastoxiv.page/@arXiv_csLG_bot/
- Dual-Distilled Heterogeneous Federated Learning with Adaptive Margins for Trainable Global Protot...
Fatema Siddika, Md Anwar Hossen, Wensheng Zhang, Anuj Sharma, Juan Pablo Mu\~noz, Ali Jannesari
arxiv.org/abs/2508.19009 mastoxiv.page/@arXiv_csLG_bot/
- STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
Gary Simethy, Daniel Ortiz-Arroyo, Petar Durdevic
arxiv.org/abs/2508.19011 mastoxiv.page/@arXiv_csLG_bot/
- EEGDM: Learning EEG Representation with Latent Diffusion Model
Shaocong Wang, Tong Liu, Yihan Li, Ming Li, Kairui Wen, Pei Yang, Wenqi Ji, Minjing Yu, Yong-Jin Liu
arxiv.org/abs/2508.20705 mastoxiv.page/@arXiv_csLG_bot/
- Data-Free Continual Learning of Server Models in Model-Heterogeneous Cloud-Device Collaboration
Xiao Zhang, Zengzhe Chen, Yuan Yuan, Yifei Zou, Fuzhen Zhuang, Wenyu Jiao, Yuke Wang, Dongxiao Yu
arxiv.org/abs/2509.25977 mastoxiv.page/@arXiv_csLG_bot/
- Fine-Tuning Masked Diffusion for Provable Self-Correction
Jaeyeon Kim, Seunggeun Kim, Taekyun Lee, David Z. Pan, Hyeji Kim, Sham Kakade, Sitan Chen
arxiv.org/abs/2510.01384 mastoxiv.page/@arXiv_csLG_bot/
- A Generic Machine Learning Framework for Radio Frequency Fingerprinting
Alex Hiles, Bashar I. Ahmad
arxiv.org/abs/2510.09775 mastoxiv.page/@arXiv_csLG_bot/
- ASecond-Order SpikingSSM for Wearables
Kartikay Agrawal, Abhijeet Vikram, Vedant Sharma, Vaishnavi Nagabhushana, Ayon Borthakur
arxiv.org/abs/2510.14386 mastoxiv.page/@arXiv_csLG_bot/
- Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Heming Zou, Yixiu Mao, Yun Qu, Qi Wang, Xiangyang Ji
arxiv.org/abs/2510.16882 mastoxiv.page/@arXiv_csLG_bot/
- Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN...
Omer Jauhar Khan, Sudais Khan, Hafeez Anwar, Shahzeb Khan, Shams Ul Arifeen
arxiv.org/abs/2510.23117 mastoxiv.page/@arXiv_csLG_bot/
- Training Deep Physics-Informed Kolmogorov-Arnold Networks
Spyros Rigas, Fotios Anagnostopoulos, Michalis Papachristou, Georgios Alexandridis
arxiv.org/abs/2510.23501 mastoxiv.page/@arXiv_csLG_bot/
- Semi-Supervised Preference Optimization with Limited Feedback
Seonggyun Lee, Sungjun Lim, Seojin Park, Soeun Cheon, Kyungwoo Song
arxiv.org/abs/2511.00040 mastoxiv.page/@arXiv_csLG_bot/
- Towards Causal Market Simulators
Dennis Thumm, Luis Ontaneda Mijares
arxiv.org/abs/2511.04469 mastoxiv.page/@arXiv_csLG_bot/
- Incremental Generation is Necessary and Sufficient for Universality in Flow-Based Modelling
Hossein Rouhvarzi, Anastasis Kratsios
arxiv.org/abs/2511.09902 mastoxiv.page/@arXiv_csLG_bot/
- Optimizing Mixture of Block Attention
Guangxuan Xiao, Junxian Guo, Kasra Mazaheri, Song Han
arxiv.org/abs/2511.11571 mastoxiv.page/@arXiv_csLG_bot/
- Assessing Automated Fact-Checking for Medical LLM Responses with Knowledge Graphs
Shasha Zhou, Mingyu Huang, Jack Cole, Charles Britton, Ming Yin, Jan Wolber, Ke Li
arxiv.org/abs/2511.12817 mastoxiv.page/@arXiv_csLG_bot/
toXiv_bot_toot

@arXiv_qbioQM_bot@mastoxiv.page
2025-10-15 08:47:02

PRISM: Enhancing Protein Inverse Folding through Fine-Grained Retrieval on Structure-Sequence Multimodal Representations
Sazan Mahbub, Souvik Kundu, Eric P. Xing
arxiv.org/abs/2510.11750

@arXiv_csCV_bot@mastoxiv.page
2025-10-15 10:54:41

CuMPerLay: Learning Cubical Multiparameter Persistence Vectorizations
Caner Korkmaz, Brighton Nuwagira, Bar{\i}\c{s} Co\c{s}kunuzer, Tolga Birdal
arxiv.org/abs/2510.12795

@arXiv_csMA_bot@mastoxiv.page
2025-10-15 08:03:51

Empirical Study on Robustness and Resilience in Cooperative Multi-Agent Reinforcement Learning
Simin Li, Zihao Mao, Hanxiao Li, Zonglei Jing, Zhuohang bian, Jun Guo, Li Wang, Zhuoran Han, Ruixiao Xu, Xin Yu, Chengdong Ma, Yuqing Ma, Bo An, Yaodong Yang, Weifeng Lv, Xianglong Liu
arxiv.org/abs/2510.11824

@arXiv_mathNA_bot@mastoxiv.page
2025-10-13 08:11:10

Augmented data and neural networks for robust epidemic forecasting: application to COVID-19 in Italy
Giacomo Dimarco, Federica Ferrarese, Lorenzo Pareschi
arxiv.org/abs/2510.09192

@arXiv_qbiobm_bot@mastoxiv.page
2025-10-15 12:58:33

Replaced article(s) found for q-bio.BM. arxiv.org/list/q-bio.BM/new
[1/1]:
- HelixVS: Deep Learning-Enhanced Structure-Based Platform for Screening and Design
Shanzhuo Zhang, Xianbin Ye, Donglong He, Yueyang Huang, Xiaonan Zhang, Xiaomin Fang

@arXiv_csAI_bot@mastoxiv.page
2025-10-14 17:29:10

Crosslisted article(s) found for cs.AI. arxiv.org/list/cs.AI/new
[11/17]:
- Deep Learning in Astrophysics
Yuan-Sen Ting
arxi…

@arXiv_physicsinsdet_bot@mastoxiv.page
2025-10-14 09:52:18

Improved Pixel-wise Calibration for Charge-Integrating Hybrid Pixel Detectors with Performance Validation
X. Xie, A. Bergamaschi, M. Br\"uckner, M. Carulla, R. Dinapoli, S. Ebner, K. Ferjaoui, E. Fr\"ojdh, V. Gautam, D. Greiffenberg, S. Hasanaj, J. Heymes, V. Hinger, M. H\"urst, V. Kedych, T. King, S. Li, C. Lopez-Cuenca, A. Mazzoleni, D. Mezza, K. Moustakas, A. Mozzanica, J. Mulvey, M. M\"uller, K. A. Paton, C. Posada Soto, C. Ruder, B. Schmitt, P. Sieber, S. Sille…

@arXiv_eessAS_bot@mastoxiv.page
2025-10-15 09:16:52

I-DCCRN-VAE: An Improved Deep Representation Learning Framework for Complex VAE-based Single-channel Speech Enhancement
Jiatong Li, Simon Doclo
arxiv.org/abs/2510.12485

@arXiv_econTH_bot@mastoxiv.page
2025-10-15 11:03:19

Crosslisted article(s) found for econ.TH. arxiv.org/list/econ.TH/new
[1/1]:
- Heterogeneous RBCs via deep multi-agent reinforcement learning
Federico Gabriele, Aldo Glielmo, Marco Taboga

@arXiv_csCR_bot@mastoxiv.page
2025-10-13 08:58:10

Psyzkaller: Learning from Historical and On-the-Fly Execution Data for Smarter Seed Generation in OS kernel Fuzzing
Boyu Liu, Yang Zhang, Liang Cheng, Yi Zhang, Junjie Fan, Yu Fu
arxiv.org/abs/2510.08918

@arXiv_qbioNC_bot@mastoxiv.page
2025-12-11 08:29:01

NeuroSketch: An Effective Framework for Neural Decoding via Systematic Architectural Optimization
Gaorui Zhang, Zhizhang Yuan, Jialan Yang, Junru Chen, Li Meng, Yang Yang
arxiv.org/abs/2512.09524 arxiv.org/pdf/2512.09524 arxiv.org/html/2512.09524
arXiv:2512.09524v1 Announce Type: new
Abstract: Neural decoding, a critical component of Brain-Computer Interface (BCI), has recently attracted increasing research interest. Previous research has focused on leveraging signal processing and deep learning methods to enhance neural decoding performance. However, the in-depth exploration of model architectures remains underexplored, despite its proven effectiveness in other tasks such as energy forecasting and image classification. In this study, we propose NeuroSketch, an effective framework for neural decoding via systematic architecture optimization. Starting with the basic architecture study, we find that CNN-2D outperforms other architectures in neural decoding tasks and explore its effectiveness from temporal and spatial perspectives. Building on this, we optimize the architecture from macro- to micro-level, achieving improvements in performance at each step. The exploration process and model validations take over 5,000 experiments spanning three distinct modalities (visual, auditory, and speech), three types of brain signals (EEG, SEEG, and ECoG), and eight diverse decoding tasks. Experimental results indicate that NeuroSketch achieves state-of-the-art (SOTA) performance across all evaluated datasets, positioning it as a powerful tool for neural decoding. Our code and scripts are available at github.com/Galaxy-Dawn/NeuroSk.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-10-13 12:17:31

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[4/5]:
- Application of Deep Reinforcement Learning to At-the-Money S&P 500 Options Hedging
Zofia Bracha, Pawe{\l} Sakowski, Jakub Micha\'nk\'ow

@arXiv_csIT_bot@mastoxiv.page
2025-10-15 07:54:51

CoNet-Rx: Collaborative Neural Networks for OFDM Receivers
Mohanad Obeed, Ming Jian
arxiv.org/abs/2510.12739 arxiv.org/pdf/2510.12739

@arXiv_physicsgeoph_bot@mastoxiv.page
2025-10-14 15:16:00

Crosslisted article(s) found for physics.geo-ph. arxiv.org/list/physics.geo-ph/
[1/1]:
- Rethinking deep learning: linear regression remains a key benchmark in predicting terrestrial wat...
Nie, Kumar, Chen, Zhao, Skulovich, Yoo, Pflug, Ahmad, Konapala

@arXiv_csDC_bot@mastoxiv.page
2025-10-14 10:02:18

An Explorative Study on Distributed Computing Techniques in Training and Inference of Large Language Models
Sheikh Azizul Hakim, Saem Hasan
arxiv.org/abs/2510.11211

@arXiv_astrophIM_bot@mastoxiv.page
2025-10-13 08:39:00

Foundation Models for Astrobiology: Paper I -- Workshop and Overview
Ryan Felton, Caleb Scharf, Stuart Bartlett, Nathalie A. Cabrol, Victoria Da Poian, Diana Gentry, Jian Gong, Adrienne Hoarfrost, Manil Maskey, Floyd Nichols, Conor A. Nixon, Tejas Panambur, Joseph Pasterski, Anton S. Petrov, Anirudh Prabhu, Brenda Thomson, Hamed Valizadegan, Kimberley Warren-Rhodes, David Wettergreen, Michael L. Wong, Anastasia Yanchilina

@arXiv_eessIV_bot@mastoxiv.page
2025-10-13 08:46:00

Progressive Uncertainty-Guided Evidential U-KAN for Trustworthy Medical Image Segmentation
Zhen Yang, Yansong Ma, Lei Chen
arxiv.org/abs/2510.08949

@arXiv_physicsdataan_bot@mastoxiv.page
2025-10-13 11:14:25

Crosslisted article(s) found for physics.data-an. arxiv.org/list/physics.data-an
[1/1]:
- Deep Learning of the Biswas-Chatterjee-Sen Model
Neto, Alencar, Brito, Alves, Lima, Macedo-Filho, Ferreira, Alves

@arXiv_csSD_bot@mastoxiv.page
2025-10-14 09:30:58

Improving Speech Emotion Recognition with Mutual Information Regularized Generative Model
Chung-Soo Ahn, Rajib Rana, Sunil Sivadas, Carlos Busso, Jagath C. Rajapakse
arxiv.org/abs/2510.10078

@arXiv_csCE_bot@mastoxiv.page
2025-10-15 08:02:01

Constrained Sensing and Reliable State Estimation with Shallow Recurrent Decoders on a TRIGA Mark II Reactor
Stefano Riva, Carolina Introini, Jos\`e Nathan Kutz, Antonio Cammi
arxiv.org/abs/2510.12368

@arXiv_csCR_bot@mastoxiv.page
2025-10-15 09:59:51

DeepTrust: Multi-Step Classification through Dissimilar Adversarial Representations for Robust Android Malware Detection
Daniel Pulido-Cort\'azar, Daniel Gibert, Felip Many\`a
arxiv.org/abs/2510.12310

@arXiv_csAI_bot@mastoxiv.page
2025-10-14 22:03:15

Replaced article(s) found for cs.AI. arxiv.org/list/cs.AI/new
[7/14]:
- QAMA: Scalable Quantum Annealing Multi-Head Attention Operator for Deep Learning
Peng Du, Jinjing Shi, Wenxuan Wang, Yin Ma, Kai Wen, Xuelong Li

@arXiv_csPL_bot@mastoxiv.page
2025-10-14 08:02:26

ACT: Automatically Generating Compiler Backends from Tensor Accelerator ISA Descriptions
Devansh Jain, Akash Pardeshi, Marco Frigo, Krut Patel, Kaustubh Khulbe, Jai Arora, Charith Mendis
arxiv.org/abs/2510.09932

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 13:54:24

Replaced article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[1/5]:
- Feed Two Birds with One Scone: Exploiting Wild Data for Both Out-of-Distribution Generalization a...
Haoyue Bai, Gregory Canal, Xuefeng Du, Jeongyeol Kwon, Robert Nowak, Yixuan Li
arxiv.org/abs/2306.09158
- Sparse, Efficient and Explainable Data Attribution with DualXDA
Galip \"Umit Yolcu, Moritz Weckbecker, Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin
arxiv.org/abs/2402.12118 mastoxiv.page/@arXiv_csLG_bot/
- HGQ: High Granularity Quantization for Real-time Neural Networks on FPGAs
Sun, Que, {\AA}rrestad, Loncar, Ngadiuba, Luk, Spiropulu
arxiv.org/abs/2405.00645 mastoxiv.page/@arXiv_csLG_bot/
- On the Identification of Temporally Causal Representation with Instantaneous Dependence
Li, Shen, Zheng, Cai, Song, Gong, Chen, Zhang
arxiv.org/abs/2405.15325 mastoxiv.page/@arXiv_csLG_bot/
- Basis Selection: Low-Rank Decomposition of Pretrained Large Language Models for Target Applications
Yang Li, Daniel Agyei Asante, Changsheng Zhao, Ernie Chang, Yangyang Shi, Vikas Chandra
arxiv.org/abs/2405.15877 mastoxiv.page/@arXiv_csLG_bot/
- Privacy Bias in Language Models: A Contextual Integrity-based Auditing Metric
Yan Shvartzshnaider, Vasisht Duddu
arxiv.org/abs/2409.03735 mastoxiv.page/@arXiv_csLG_bot/
- Low-Rank Filtering and Smoothing for Sequential Deep Learning
Joanna Sliwa, Frank Schneider, Nathanael Bosch, Agustinus Kristiadi, Philipp Hennig
arxiv.org/abs/2410.06800 mastoxiv.page/@arXiv_csLG_bot/
- Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification
Xiaoyu Tao, Tingyue Pan, Mingyue Cheng, Yucong Luo, Qi Liu, Enhong Chen
arxiv.org/abs/2410.18686 mastoxiv.page/@arXiv_csLG_bot/
- Fairness via Independence: A (Conditional) Distance Covariance Framework
Ruifan Huang, Haixia Liu
arxiv.org/abs/2412.00720 mastoxiv.page/@arXiv_csLG_bot/
- Data for Mathematical Copilots: Better Ways of Presenting Proofs for Machine Learning
Simon Frieder, et al.
arxiv.org/abs/2412.15184 mastoxiv.page/@arXiv_csLG_bot/
- Pairwise Elimination with Instance-Dependent Guarantees for Bandits with Cost Subsidy
Ishank Juneja, Carlee Joe-Wong, Osman Ya\u{g}an
arxiv.org/abs/2501.10290 mastoxiv.page/@arXiv_csLG_bot/
- Towards Human-Guided, Data-Centric LLM Co-Pilots
Evgeny Saveliev, Jiashuo Liu, Nabeel Seedat, Anders Boyd, Mihaela van der Schaar
arxiv.org/abs/2501.10321 mastoxiv.page/@arXiv_csLG_bot/
- Regularized Langevin Dynamics for Combinatorial Optimization
Shengyu Feng, Yiming Yang
arxiv.org/abs/2502.00277
- Generating Samples to Probe Trained Models
Eren Mehmet K{\i}ral, Nur\c{s}en Ayd{\i}n, \c{S}. \.Ilker Birbil
arxiv.org/abs/2502.06658 mastoxiv.page/@arXiv_csLG_bot/
- On Agnostic PAC Learning in the Small Error Regime
Julian Asilis, Mikael M{\o}ller H{\o}gsgaard, Grigoris Velegkas
arxiv.org/abs/2502.09496 mastoxiv.page/@arXiv_csLG_bot/
- Preconditioned Inexact Stochastic ADMM for Deep Model
Shenglong Zhou, Ouya Wang, Ziyan Luo, Yongxu Zhu, Geoffrey Ye Li
arxiv.org/abs/2502.10784 mastoxiv.page/@arXiv_csLG_bot/
- On the Effect of Sampling Diversity in Scaling LLM Inference
Wang, Liu, Chen, Light, Liu, Chen, Zhang, Cheng
arxiv.org/abs/2502.11027 mastoxiv.page/@arXiv_csLG_bot/
- How to use score-based diffusion in earth system science: A satellite nowcasting example
Randy J. Chase, Katherine Haynes, Lander Ver Hoef, Imme Ebert-Uphoff
arxiv.org/abs/2505.10432 mastoxiv.page/@arXiv_csLG_bot/
- PEAR: Equal Area Weather Forecasting on the Sphere
Hampus Linander, Christoffer Petersson, Daniel Persson, Jan E. Gerken
arxiv.org/abs/2505.17720 mastoxiv.page/@arXiv_csLG_bot/
- Train Sparse Autoencoders Efficiently by Utilizing Features Correlation
Vadim Kurochkin, Yaroslav Aksenov, Daniil Laptev, Daniil Gavrilov, Nikita Balagansky
arxiv.org/abs/2505.22255 mastoxiv.page/@arXiv_csLG_bot/
- A Certified Unlearning Approach without Access to Source Data
Umit Yigit Basaran, Sk Miraj Ahmed, Amit Roy-Chowdhury, Basak Guler
arxiv.org/abs/2506.06486 mastoxiv.page/@arXiv_csLG_bot/
toXiv_bot_toot

@arXiv_csNI_bot@mastoxiv.page
2025-10-13 08:33:00

Prioritizing Latency with Profit: A DRL-Based Admission Control for 5G Network Slices
Proggya Chakraborty, Aaquib Asrar, Jayasree Sengupta, Sipra Das Bit
arxiv.org/abs/2510.08769

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 11:50:31

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[2/3]:
- Sharp Structure-Agnostic Lower Bounds for General Functional Estimation
Jikai Jin, Vasilis Syrgkanis
arxiv.org/abs/2512.17341 mastoxiv.page/@arXiv_statML_bo
- Timely Information Updating for Mobile Devices Without and With ML Advice
Yu-Pin Hsu, Yi-Hsuan Tseng
arxiv.org/abs/2512.17381 mastoxiv.page/@arXiv_csNI_bot/
- SWE-Bench : A Framework for the Scalable Generation of Software Engineering Benchmarks from Open...
Wang, Ramalho, Celestino, Pham, Liu, Sinha, Portillo, Osunwa, Maduekwe
arxiv.org/abs/2512.17419 mastoxiv.page/@arXiv_csSE_bot/
- Perfect reconstruction of sparse signals using nonconvexity control and one-step RSB message passing
Xiaosi Gu, Ayaka Sakata, Tomoyuki Obuchi
arxiv.org/abs/2512.17426 mastoxiv.page/@arXiv_statML_bo
- MULTIAQUA: A multimodal maritime dataset and robust training strategies for multimodal semantic s...
Jon Muhovi\v{c}, Janez Per\v{s}
arxiv.org/abs/2512.17450 mastoxiv.page/@arXiv_csCV_bot/
- When Data Quality Issues Collide: A Large-Scale Empirical Study of Co-Occurring Data Quality Issu...
Emmanuel Charleson Dapaah, Jens Grabowski
arxiv.org/abs/2512.17460 mastoxiv.page/@arXiv_csSE_bot/
- Behavioural Effects of Agentic Messaging: A Case Study on a Financial Service Application
Olivier Jeunen, Schaun Wheeler
arxiv.org/abs/2512.17462 mastoxiv.page/@arXiv_csIR_bot/
- Linear Attention for Joint Power Optimization and User-Centric Clustering in Cell-Free Networks
Irched Chafaa, Giacomo Bacci, Luca Sanguinetti
arxiv.org/abs/2512.17466 mastoxiv.page/@arXiv_eessSY_bo
- Translating the Rashomon Effect to Sequential Decision-Making Tasks
Dennis Gross, J{\o}rn Eirik Betten, Helge Spieker
arxiv.org/abs/2512.17470 mastoxiv.page/@arXiv_csAI_bot/
- Alternating Direction Method of Multipliers for Nonlinear Matrix Decompositions
Atharva Awari, Nicolas Gillis, Arnaud Vandaele
arxiv.org/abs/2512.17473 mastoxiv.page/@arXiv_eessSP_bo
- TwinSegNet: A Digital Twin-Enabled Federated Learning Framework for Brain Tumor Analysis
Almustapha A. Wakili, Adamu Hussaini, Abubakar A. Musa, Woosub Jung, Wei Yu
arxiv.org/abs/2512.17488 mastoxiv.page/@arXiv_csCV_bot/
- Resource-efficient medical image classification for edge devices
Mahsa Lavaei, Zahra Abadi, Salar Beigzad, Alireza Maleki
arxiv.org/abs/2512.17515 mastoxiv.page/@arXiv_eessIV_bo
- PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning i...
Brussee, Valkema, Weijer, Doeleman, Schrader, Kers
arxiv.org/abs/2512.17517 mastoxiv.page/@arXiv_csCV_bot/
- HydroGym: A Reinforcement Learning Platform for Fluid Dynamics
Christian Lagemann, et al.
arxiv.org/abs/2512.17534 mastoxiv.page/@arXiv_physicsfl
- When De-noising Hurts: A Systematic Study of Speech Enhancement Effects on Modern Medical ASR Sys...
Chondhekar, Murukuri, Vasani, Goyal, Badami, Rana, SN, Pandia, Katiyar, Jagadeesh, Gulati
arxiv.org/abs/2512.17562 mastoxiv.page/@arXiv_csSD_bot/
- Enabling Disaggregated Multi-Stage MLLM Inference via GPU-Internal Scheduling and Resource Sharing
Lingxiao Zhao, Haoran Zhou, Yuezhi Che, Dazhao Cheng
arxiv.org/abs/2512.17574 mastoxiv.page/@arXiv_csDC_bot/
- SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation i...
N. A. Adarsh Pritam, Jeba Shiney O, Sanyam Jain
arxiv.org/abs/2512.17585 mastoxiv.page/@arXiv_eessIV_bo
- MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection an...
Tosin Ige, Christopher Kiekintveld, Aritran Piplai, Asif Rahman, Olukunle Kolade, Sasidhar Kunapuli
arxiv.org/abs/2512.17594 mastoxiv.page/@arXiv_csCR_bot/
- Confidence-Credibility Aware Weighted Ensembles of Small LLMs Outperform Large LLMs in Emotion De...
Menna Elgabry, Ali Hamdi
arxiv.org/abs/2512.17630 mastoxiv.page/@arXiv_csCL_bot/
- Generative Multi-Objective Bayesian Optimization with Scalable Batch Evaluations for Sample-Effic...
Madhav R. Muthyala, Farshud Sorourifar, Tianhong Tan, You Peng, Joel A. Paulson
arxiv.org/abs/2512.17659 mastoxiv.page/@arXiv_statML_bo
toXiv_bot_toot

@arXiv_csSD_bot@mastoxiv.page
2025-10-14 10:33:48

ProGress: Structured Music Generation via Graph Diffusion and Hierarchical Music Analysis
Stephen Ni-Hahn, Chao P\'eter Yang, Mingchen Ma, Cynthia Rudin, Simon Mak, Yue Jiang
arxiv.org/abs/2510.10249

@arXiv_csCE_bot@mastoxiv.page
2025-10-14 07:55:44

GrifFinNet: A Graph-Relation Integrated Transformer for Financial Predictions
Chenlanhui Dai, Wenyan Wang, Yusi Fan, Yueying Wang, Lan Huang, Kewei Li, Fengfeng Zhou
arxiv.org/abs/2510.10387

@arXiv_csCV_bot@mastoxiv.page
2025-10-15 10:47:31

Zero-Shot CFC: Fast Real-World Image Denoising based on Cross-Frequency Consistency
Yanlin Jiang, Yuchen Liu, Mingren Liu
arxiv.org/abs/2510.12646

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 11:50:19

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[1/3]:
- Optimizing Text Search: A Novel Pattern Matching Algorithm Based on Ukkonen's Approach
Xinyu Guan, Shaohua Zhang
arxiv.org/abs/2512.16927 mastoxiv.page/@arXiv_csDS_bot/
- SpIDER: Spatially Informed Dense Embedding Retrieval for Software Issue Localization
Shravan Chaudhari, Rahul Thomas Jacob, Mononito Goswami, Jiajun Cao, Shihab Rashid, Christian Bock
arxiv.org/abs/2512.16956 mastoxiv.page/@arXiv_csSE_bot/
- MemoryGraft: Persistent Compromise of LLM Agents via Poisoned Experience Retrieval
Saksham Sahai Srivastava, Haoyu He
arxiv.org/abs/2512.16962 mastoxiv.page/@arXiv_csCR_bot/
- Colormap-Enhanced Vision Transformers for MRI-Based Multiclass (4-Class) Alzheimer's Disease Clas...
Faisal Ahmed
arxiv.org/abs/2512.16964 mastoxiv.page/@arXiv_eessIV_bo
- Probing Scientific General Intelligence of LLMs with Scientist-Aligned Workflows
Wanghan Xu, et al.
arxiv.org/abs/2512.16969 mastoxiv.page/@arXiv_csAI_bot/
- PAACE: A Plan-Aware Automated Agent Context Engineering Framework
Kamer Ali Yuksel
arxiv.org/abs/2512.16970 mastoxiv.page/@arXiv_csAI_bot/
- A Women's Health Benchmark for Large Language Models
Elisabeth Gruber, et al.
arxiv.org/abs/2512.17028 mastoxiv.page/@arXiv_csCL_bot/
- Perturb Your Data: Paraphrase-Guided Training Data Watermarking
Pranav Shetty, Mirazul Haque, Petr Babkin, Zhiqiang Ma, Xiaomo Liu, Manuela Veloso
arxiv.org/abs/2512.17075 mastoxiv.page/@arXiv_csCL_bot/
- Disentangled representations via score-based variational autoencoders
Benjamin S. H. Lyo, Eero P. Simoncelli, Cristina Savin
arxiv.org/abs/2512.17127 mastoxiv.page/@arXiv_statML_bo
- Biosecurity-Aware AI: Agentic Risk Auditing of Soft Prompt Attacks on ESM-Based Variant Predictors
Huixin Zhan
arxiv.org/abs/2512.17146 mastoxiv.page/@arXiv_csCR_bot/
- Application of machine learning to predict food processing level using Open Food Facts
Arora, Chauhan, Rana, Aditya, Bhagat, Kumar, Kumar, Semar, Singh, Bagler
arxiv.org/abs/2512.17169 mastoxiv.page/@arXiv_qbioBM_bo
- Systemic Risk Radar: A Multi-Layer Graph Framework for Early Market Crash Warning
Sandeep Neela
arxiv.org/abs/2512.17185 mastoxiv.page/@arXiv_qfinRM_bo
- Do Foundational Audio Encoders Understand Music Structure?
Keisuke Toyama, Zhi Zhong, Akira Takahashi, Shusuke Takahashi, Yuki Mitsufuji
arxiv.org/abs/2512.17209 mastoxiv.page/@arXiv_csSD_bot/
- CheXPO-v2: Preference Optimization for Chest X-ray VLMs with Knowledge Graph Consistency
Xiao Liang, Yuxuan An, Di Wang, Jiawei Hu, Zhicheng Jiao, Bin Jing, Quan Wang
arxiv.org/abs/2512.17213 mastoxiv.page/@arXiv_csCV_bot/
- Machine Learning Assisted Parameter Tuning on Wavelet Transform Amorphous Radial Distribution Fun...
Deriyan Senjaya, Stephen Ekaputra Limantoro
arxiv.org/abs/2512.17245 mastoxiv.page/@arXiv_condmatmt
- AlignDP: Hybrid Differential Privacy with Rarity-Aware Protection for LLMs
Madhava Gaikwad
arxiv.org/abs/2512.17251 mastoxiv.page/@arXiv_csCR_bot/
- Practical Framework for Privacy-Preserving and Byzantine-robust Federated Learning
Baolei Zhang, Minghong Fang, Zhuqing Liu, Biao Yi, Peizhao Zhou, Yuan Wang, Tong Li, Zheli Liu
arxiv.org/abs/2512.17254 mastoxiv.page/@arXiv_csCR_bot/
- Verifiability-First Agents: Provable Observability and Lightweight Audit Agents for Controlling A...
Abhivansh Gupta
arxiv.org/abs/2512.17259 mastoxiv.page/@arXiv_csMA_bot/
- Warmer for Less: A Cost-Efficient Strategy for Cold-Start Recommendations at Pinterest
Saeed Ebrahimi, Weijie Jiang, Jaewon Yang, Olafur Gudmundsson, Yucheng Tu, Huizhong Duan
arxiv.org/abs/2512.17277 mastoxiv.page/@arXiv_csIR_bot/
- LibriVAD: A Scalable Open Dataset with Deep Learning Benchmarks for Voice Activity Detection
Ioannis Stylianou, Achintya kr. Sarkar, Nauman Dawalatabad, James Glass, Zheng-Hua Tan
arxiv.org/abs/2512.17281 mastoxiv.page/@arXiv_csSD_bot/
- Penalized Fair Regression for Multiple Groups in Chronic Kidney Disease
Carter H. Nakamoto, Lucia Lushi Chen, Agata Foryciarz, Sherri Rose
arxiv.org/abs/2512.17340 mastoxiv.page/@arXiv_statME_bo
toXiv_bot_toot

@arXiv_eessSP_bot@mastoxiv.page
2025-10-14 07:39:21

Bluetooth Fingerprint Identification Under Domain Shift Through Transient Phase Derivative
Haytham Albousayri, Bechir Hamdaoui, Weng-Keen Wong, Nora Basha
arxiv.org/abs/2510.09940

@arXiv_csCR_bot@mastoxiv.page
2025-10-13 09:34:41

SynthID-Image: Image watermarking at internet scale
Sven Gowal, Rudy Bunel, Florian Stimberg, David Stutz, Guillermo Ortiz-Jimenez, Christina Kouridi, Mel Vecerik, Jamie Hayes, Sylvestre-Alvise Rebuffi, Paul Bernard, Chris Gamble, Mikl\'os Z. Horv\'ath, Fabian Kaczmarczyck, Alex Kaskasoli, Aleksandar Petrov, Ilia Shumailov, Meghana Thotakuri, Olivia Wiles, Jessica Yung, Zahra Ahmed, Victor Martin, Simon Rosen, Christopher Sav\v{c}ak, Armin Senoner, Nidhi Vyas, Pushmeet Kohli

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:32:50

Spatially-informed transformers: Injecting geostatistical covariance biases into self-attention for spatio-temporal forecasting
Yuri Calleo
arxiv.org/abs/2512.17696 arxiv.org/pdf/2512.17696 arxiv.org/html/2512.17696
arXiv:2512.17696v1 Announce Type: new
Abstract: The modeling of high-dimensional spatio-temporal processes presents a fundamental dichotomy between the probabilistic rigor of classical geostatistics and the flexible, high-capacity representations of deep learning. While Gaussian processes offer theoretical consistency and exact uncertainty quantification, their prohibitive computational scaling renders them impractical for massive sensor networks. Conversely, modern transformer architectures excel at sequence modeling but inherently lack a geometric inductive bias, treating spatial sensors as permutation-invariant tokens without a native understanding of distance. In this work, we propose a spatially-informed transformer, a hybrid architecture that injects a geostatistical inductive bias directly into the self-attention mechanism via a learnable covariance kernel. By formally decomposing the attention structure into a stationary physical prior and a non-stationary data-driven residual, we impose a soft topological constraint that favors spatially proximal interactions while retaining the capacity to model complex dynamics. We demonstrate the phenomenon of ``Deep Variography'', where the network successfully recovers the true spatial decay parameters of the underlying process end-to-end via backpropagation. Extensive experiments on synthetic Gaussian random fields and real-world traffic benchmarks confirm that our method outperforms state-of-the-art graph neural networks. Furthermore, rigorous statistical validation confirms that the proposed method delivers not only superior predictive accuracy but also well-calibrated probabilistic forecasts, effectively bridging the gap between physics-aware modeling and data-driven learning.
toXiv_bot_toot

@arXiv_csSD_bot@mastoxiv.page
2025-10-14 14:53:12

Crosslisted article(s) found for cs.SD. arxiv.org/list/cs.SD/new
[1/1]:
- Phase-Aware Deep Learning with Complex-Valued CNNs for Audio Signal Applications
Naman Agrawal

@arXiv_csCV_bot@mastoxiv.page
2025-10-14 13:45:28

MS-Mix: Unveiling the Power of Mixup for Multimodal Sentiment Analysis
Hongyu Zhu, Lin Chen, Mounim A. El-Yacoubi, Mingsheng Shang
arxiv.org/abs/2510.11579

@arXiv_csMA_bot@mastoxiv.page
2025-10-13 08:16:30

GRPO-GCC: Enhancing Cooperation in Spatial Public Goods Games via Group Relative Policy Optimization with Global Cooperation Constraint
Zhaoqilin Yang, Chanchan Li, Tianqi Liu, Hongxin Zhao, Youliang Tian
arxiv.org/abs/2510.08607

@arXiv_astrophIM_bot@mastoxiv.page
2025-10-14 09:39:38

The Importance of Being Adaptable: An Exploration of the Power and Limitations of Domain Adaptation for Simulation-Based Inference with Galaxy Clusters
Michelle Ntampaka, A. Ciprijanovic, Ana Maria Delgado, John Soltis, John F. Wu, Mikaeel Yunus, John ZuHone
arxiv.org/abs/2510.09748

@arXiv_csCR_bot@mastoxiv.page
2025-10-15 08:34:02

Lightweight CNN-Based Wi-Fi Intrusion Detection Using 2D Traffic Representations
Rayed Suhail Ahmad, Rehan Ahmad, Quamar Niyaz
arxiv.org/abs/2510.11898

@arXiv_csCV_bot@mastoxiv.page
2025-10-13 14:52:43

Replaced article(s) found for cs.CV. arxiv.org/list/cs.CV/new
[2/5]:
- Deep Learning for Sports Video Event Detection: Tasks, Datasets, Methods, and Challenges
Hao Xu, Arbind Agrahari Baniya, Sam Well, Mohamed Reda Bouadjenek, Richard Dazeley, Sunil Aryal

@arXiv_eessSP_bot@mastoxiv.page
2025-10-14 10:39:28

HYPERDOA: Robust and Efficient DoA Estimation using Hyperdimensional Computing
Rajat Bhattacharjya, Woohyeok Park, Arnab Sarkar, Hyunwoo Oh, Mohsen Imani, Nikil Dutt
arxiv.org/abs/2510.10718

@arXiv_eessAS_bot@mastoxiv.page
2025-10-13 07:41:50

Articulation-Informed ASR: Integrating Articulatory Features into ASR via Auxiliary Speech Inversion and Cross-Attention Fusion
Ahmed Adel Attia, Jing Liu, Carol Espy Wilson
arxiv.org/abs/2510.08585

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:32:10

Polyharmonic Cascade
Yuriy N. Bakhvalov
arxiv.org/abs/2512.17671 arxiv.org/pdf/2512.17671 arxiv.org/html/2512.17671
arXiv:2512.17671v1 Announce Type: new
Abstract: This paper presents a deep machine learning architecture, the "polyharmonic cascade" -- a sequence of packages of polyharmonic splines, where each layer is rigorously derived from the theory of random functions and the principles of indifference. This makes it possible to approximate nonlinear functions of arbitrary complexity while preserving global smoothness and a probabilistic interpretation. For the polyharmonic cascade, a training method alternative to gradient descent is proposed: instead of directly optimizing the coefficients, one solves a single global linear system on each batch with respect to the function values at fixed "constellations" of nodes. This yields synchronized updates of all layers, preserves the probabilistic interpretation of individual layers and theoretical consistency with the original model, and scales well: all computations reduce to 2D matrix operations efficiently executed on a GPU. Fast learning without overfitting on MNIST is demonstrated.
toXiv_bot_toot

@arXiv_csCV_bot@mastoxiv.page
2025-10-13 10:32:20

Minkowski-MambaNet: A Point Cloud Framework with Selective State Space Models for Forest Biomass Quantification
Jinxiang Tu, Dayong Ren, Fei Shi, Zhenhong Jia, Yahong Ren, Jiwei Qin, Fang He
arxiv.org/abs/2510.09367

@arXiv_eessSP_bot@mastoxiv.page
2025-10-14 11:14:58

CSI Prediction Using Diffusion Models
Mehdi Sattari, Javad Aliakbari, Alexandre Graell i Amat, Tommy Svensson
arxiv.org/abs/2510.11214 arxi…

@arXiv_eessSP_bot@mastoxiv.page
2025-10-13 12:55:42

Replaced article(s) found for eess.SP. arxiv.org/list/eess.SP/new
[1/1]:
- SolNet: Open-source deep learning models for photovoltaic power forecasting across the globe
Joris Depoortere, Johan Driesen, Johan Suykens, Hussain Syed Kazmi

@arXiv_eessAS_bot@mastoxiv.page
2025-10-14 09:01:48

ILD-VIT: A Unified Vision Transformer Architecture for Detection of Interstitial Lung Disease from Respiratory Sounds
Soubhagya Ranjan Hota, Arka Roy, Udit Satija
arxiv.org/abs/2510.11458