Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_eessSY_bot@mastoxiv.page
2025-10-14 11:03:29

Establishing assembly-oriented modular product architectures through Design for Assembly enhanced Modular Function Deployment
Fabio Marco Monetti, Adam Lundstr\"om, Colin de Kwant, Magnus Gyllenskepp, Antonio Maffei
arxiv.org/abs/2510.11089

@arXiv_csSE_bot@mastoxiv.page
2025-10-14 08:45:38

SLEAN: Simple Lightweight Ensemble Analysis Network for Multi-Provider LLM Coordination: Design, Implementation, and Vibe Coding Bug Investigation Case Study
Matheus J. T. Vargas
arxiv.org/abs/2510.10010

@arXiv_csLG_bot@mastoxiv.page
2025-10-15 10:49:51

Structured Sparsity and Weight-adaptive Pruning for Memory and Compute efficient Whisper models
Prasenjit K Mudi, Anshi Sachan, Dahlia Devapriya, Sheetal Kalyani
arxiv.org/abs/2510.12666

@arXiv_csAR_bot@mastoxiv.page
2025-10-14 07:50:43

Bhasha-Rupantarika: Algorithm-Hardware Co-design approach for Multilingual Neural Machine Translation
Mukul Lokhande, Tanushree Dewangan, Mohd Sharik Mansoori, Tejas Chaudhari, Akarsh J., Damayanti Lokhande, Adam Teman, Santosh Kumar Vishvakarma
arxiv.org/abs/2510.10676

@arXiv_csNI_bot@mastoxiv.page
2025-10-13 07:42:30

Wireless Datasets for Aerial Networks
Amir Hossein Fahim Raouf, Donggu Lee, Mushfiqur Rahman, Saad Masrur, Gautham Reddy, Cole Dickerson, Md Sharif Hossen, Sergio Vargas Villar, An{\i}l G\"urses, Simran Singh, Sung Joon Maeng, Martins Ezuma, Christopher Roberts, Mohamed Rabeek Sarbudeen, Thomas J. Zajkowski, Magreth Mushi, Ozgur Ozdemir, Ram Asokan, Ismail Guvenc, Mihail L. Sichitiu, Rudra Dutta

@arXiv_eessSP_bot@mastoxiv.page
2025-10-07 11:01:42

Coordinated Beamforming for Networked Integrated Communication and Multi-TMT Localization
Meidong Xia, Zhenyao He, Wei Xu, Yongming Huang, Derrick Wing Kwan Ng, Naofal Al-Dhahir
arxiv.org/abs/2510.04600

@arXiv_csGT_bot@mastoxiv.page
2025-12-10 07:58:51

Beyond Revenue and Welfare: Counterfactual Analysis of Spectrum Auctions with Application to Canada's 3800MHz Allocation
Sara Jalili Shani, Kris Joseph, Michael B. McNally, James R. Wright
arxiv.org/abs/2512.08106 arxiv.org/pdf/2512.08106 arxiv.org/html/2512.08106
arXiv:2512.08106v1 Announce Type: new
Abstract: Spectrum auctions are the primary mechanism through which governments allocate scarce radio frequencies, with outcomes that shape competition, coverage, and innovation in telecommunications markets. While traditional models of spectrum auctions often rely on strong equilibrium assumptions, we take a more parsimonious approach by modeling bidders as myopic and straightforward: in each round, firms simply demand the bundle that maximizes their utility given current prices. Despite its simplicity, this model proves effective in predicting the outcomes of Canada's 2023 auction of 3800 MHz spectrum licenses. Using detailed round-by-round bidding data, we estimate bidders' valuations through a linear programming framework and validate that our model reproduces key features of the observed allocation and price evolution. We then use these estimated valuations to simulate a counterfactual auction under an alternative mechanism that incentivizes deployment in rural and remote regions, aligning with one of the key objectives set out in the Canadian Telecommunications Act. The results show that the proposed mechanism substantially improves population coverage in underserved areas. These findings demonstrate that a behavioral model with minimal assumptions is sufficient to generate reliable counterfactual predictions, making it a practical tool for policymakers to evaluate how alternative auction designs may influence future outcomes. In particular, our study demonstrates a method for counterfactual mechanism design, providing a framework to evaluate how alternative auction rules could advance policy goals such as equitable deployment across Canada.
toXiv_bot_toot

@arXiv_csAR_bot@mastoxiv.page
2025-10-08 07:31:29

Stratum: System-Hardware Co-Design with Tiered Monolithic 3D-Stackable DRAM for Efficient MoE Serving
Yue Pan, Zihan Xia, Po-Kai Hsu, Lanxiang Hu, Hyungyo Kim, Janak Sharda, Minxuan Zhou, Nam Sung Kim, Shimeng Yu, Tajana Rosing, Mingu Kang
arxiv.org/abs/2510.05245

@arXiv_csCV_bot@mastoxiv.page
2025-09-30 15:01:56

YOLO26: Key Architectural Enhancements and Performance Benchmarking for Real-Time Object Detection
Ranjan Sapkota, Rahul Harsha Cheppally, Ajay Sharda, Manoj Karkee
arxiv.org/abs/2509.25164

@arXiv_csET_bot@mastoxiv.page
2025-10-06 08:09:39

NEURODNAAI: Neural pipeline approaches for the advancing dna-based information storage as a sustainable digital medium using deep learning framework
Rakesh Thakur, Lavanya Singh, Yashika, Manomay Bundawala, Aruna Kumar
arxiv.org/abs/2510.02417

@arXiv_physicsgeoph_bot@mastoxiv.page
2025-10-10 07:53:08

Single and Multi-Objective Optimization of Distributed Acoustic Sensing Cable Layouts for Geophysical Applications
Dominik Strutz, Tjeerd Kiers, Andrew Curtis
arxiv.org/abs/2510.07531

@arXiv_physicsinsdet_bot@mastoxiv.page
2025-10-07 09:13:12

A borehole muon detector with SiPM-on-tile technology
Miguel Arratia, Jiajun Huang, Sean Preins, Sebastian Ritter, Christian P. Romero, Sebastian Tapia
arxiv.org/abs/2510.04036

@arXiv_csSE_bot@mastoxiv.page
2025-10-06 08:36:39

Key Considerations for Auto-Scaling: Lessons from Benchmark Microservices
Majid Dashtbani, Ladan Tahvildari
arxiv.org/abs/2510.02585 arxiv.…

@arXiv_hepex_bot@mastoxiv.page
2025-09-26 08:38:51

Design and deployment of a fast neural network for measuring the properties of muons originating from displaced vertices in the CMS Endcap Muon Track Finder
Efe Yigitbasi (on behalf of CMS Collaboration)
arxiv.org/abs/2509.21062

@arXiv_csAI_bot@mastoxiv.page
2025-09-17 10:32:50

Agentic AI for Financial Crime Compliance
Henrik Axelsen, Valdemar Licht, Jan Damsgaard
arxiv.org/abs/2509.13137 arxiv.org/pdf/2509.13137…

@arXiv_csRO_bot@mastoxiv.page
2025-09-23 09:08:50

Substrate-Timing-Independence for Meta-State Stability of Distributed Robotic Swarms
Tinapat Limsila, Mehul Sharma, Paulo Garcia
arxiv.org/abs/2509.16492

@arXiv_csNI_bot@mastoxiv.page
2025-10-01 10:31:18

Introducing Large Language Models in the Design Flow of Time Sensitive Networking
Rubi Debnath, Luxi Zhao, Mohammadreza Barzegaran, Sebastian Steinhorst
arxiv.org/abs/2509.26368

@arXiv_eessSY_bot@mastoxiv.page
2025-10-02 09:46:51

Structuring Automotive Data for Systems Engineering: A Taxonomy-Based Approach
Carl Philipp Hohl, Philipp Reis, Tobias Sch\"urmann, Stefan Otten, Eric Sax
arxiv.org/abs/2510.00963

@arXiv_physicsoptics_bot@mastoxiv.page
2025-09-26 09:00:31

Intelligent Mode Sorting in Turbulence with Task-Dependent Optical Neural Networks
Christopher R. Rawlings, Mitchell A. Cox
arxiv.org/abs/2509.20818

@arXiv_csDC_bot@mastoxiv.page
2025-09-23 09:52:40

Expert-as-a-Service: Towards Efficient, Scalable, and Robust Large-scale MoE Serving
Ziming Liu, Boyu Tian, Guoteng Wang, Zhen Jiang, Peng Sun, Zhenhua Han, Tian Tang, Xiaohe Hu, Yanmin Jia, Yan Zhang, He Liu, Mingjun Zhang, Yiqi Zhang, Qiaoling Chen, Shenggan Cheng, Mingyu Gao, Yang You, Siyuan Feng
arxiv.org/abs/2509.17863

@arXiv_csNI_bot@mastoxiv.page
2025-09-23 08:40:00

Kalman Filtering-Assisted Node Deployment for Distributed OTFS-ISAC: A Geometry-Aware Design for the Joint Sensing and Communication
Jyotsna Rani, Kuntal Deka, Ganesh Prasad, Zilong Liu
arxiv.org/abs/2509.16700

@arXiv_csNI_bot@mastoxiv.page
2025-09-16 10:14:57

An Internet of Intelligent Things Framework for Decentralized Heterogeneous Platforms
Vadim Allayev, Mahbubur Rahman
arxiv.org/abs/2509.10507