2025-09-18 09:56:31
Dual-Actor Fine-Tuning of VLA Models: A Talk-and-Tweak Human-in-the-Loop Approach
Piaopiao Jin, Qi Wang, Guokang Sun, Ziwen Cai, Pinjia He, Yangwei You
https://arxiv.org/abs/2509.13774
Dual-Actor Fine-Tuning of VLA Models: A Talk-and-Tweak Human-in-the-Loop Approach
Piaopiao Jin, Qi Wang, Guokang Sun, Ziwen Cai, Pinjia He, Yangwei You
https://arxiv.org/abs/2509.13774
Latent Traits and Cross-Task Transfer: Deconstructing Dataset Interactions in LLM Fine-tuning
Shambhavi Krishna, Atharva Naik, Chaitali Agarwal, Sudharshan Govindan, Taesung Lee, Haw-Shiuan Chang
https://arxiv.org/abs/2509.13624
Pharmacist: Safety Alignment Data Curation for Large Language Models against Harmful Fine-tuning
Guozhi Liu, Qi Mu, Tiansheng Huang, Xinhua Wang, Li Shen, Weiwei Lin, Zhang Li
https://arxiv.org/abs/2510.10085
Evolution of meta's llama models and parameter-efficient fine-tuning of large language models: a survey
Abdulhady Abas Abdullah, Arkaitz Zubiaga, Seyedali Mirjalili, Amir H. Gandomi, Fatemeh Daneshfar, Mohammadsadra Amini, Alan Salam Mohammed, Hadi Veisi
https://arxiv.org/abs/2510.12178
Language models' activations linearly encode training-order recency
Dmitrii Krasheninnikov, Richard E. Turner, David Krueger
https://arxiv.org/abs/2509.14223 https://…
Personalized Federated Fine-Tuning of Vision Foundation Models for Healthcare
Adam Tupper, Christian Gagn\'e
https://arxiv.org/abs/2510.12741 https://a…
FedLoDrop: Federated LoRA with Dropout for Generalized LLM Fine-tuning
Sijing Xie, Dingzhu Wen, Changsheng You, Qimei Chen, Mehdi Bennis, Kaibin Huang
https://arxiv.org/abs/2510.12078
NIRVANA: Structured pruning reimagined for large language models compression
Mengting Ai, Tianxin Wei, Sirui Chen, Jingrui He
https://arxiv.org/abs/2509.14230 https://
Mira Murati's Thinking Machines Lab makes Tinker, its API for fine-tuning language models, generally available, adds support for Kimi K2 Thinking, and more (Thinking Machines Lab)
https://thinkingmachines.ai/blog/tinker-general-availability/
Improving Context Fidelity via Native Retrieval-Augmented Reasoning
Suyuchen Wang, Jinlin Wang, Xinyu Wang, Shiqi Li, Xiangru Tang, Sirui Hong, Xiao-Wen Chang, Chenglin Wu, Bang Liu
https://arxiv.org/abs/2509.13683
Towards Rationale-Answer Alignment of LVLMs via Self-Rationale Calibration
Yuanchen Wu, Ke Yan, Shouhong Ding, Ziyin Zhou, Xiaoqiang Li
https://arxiv.org/abs/2509.13919 https://…
TICL: Text-Embedding KNN For Speech In-Context Learning Unlocks Speech Recognition Abilities of Large Multimodal Models
Haolong Zheng, Yekaterina Yegorova, Mark Hasegawa-Johnson
https://arxiv.org/abs/2509.13395
Predicting Crystal Structures and Ionic Conductivity in Li$_{3}$YCl$_{6-x}$Br$_{x}$ Halide Solid Electrolytes Using a Fine-Tuned Machine Learning Interatomic Potential
Jonas B\"ohm, Aur\'elie Champagne
https://arxiv.org/abs/2510.09861
Canary-1B-v2 & Parakeet-TDT-0.6B-v3: Efficient and High-Performance Models for Multilingual ASR and AST
Monica Sekoyan, Nithin Rao Koluguri, Nune Tadevosyan, Piotr Zelasko, Travis Bartley, Nick Karpov, Jagadeesh Balam, Boris Ginsburg
https://arxiv.org/abs/2509.14128
InstructPLM-mu: 1-Hour Fine-Tuning of ESM2 Beats ESM3 in Protein Mutation Predictions
Junde Xu, Yapin Shi, Lijun Lang, Taoyong Cui, Zhiming Zhang, Guangyong Chen, Jiezhong Qiu, Pheng-Ann Heng
https://arxiv.org/abs/2510.03370
Data-Model Co-Evolution: Growing Test Sets to Refine LLM Behavior
Minjae Lee, Minsuk Kahng
https://arxiv.org/abs/2510.12728 https://arxiv.org/pdf/2510.1272…
TIT: A Tree-Structured Instruction Tuning Approach for LLM-Based Code Translation
He Jiang, Yufu Wang, Hao Lin, Peiyu Zou, Zhide Zhou, Ang Jia, Xiaochen Li, Zhilei Ren
https://arxiv.org/abs/2510.09400 …
Stacked Regression using Off-the-shelf, Stimulus-tuned and Fine-tuned Neural Networks for Predicting fMRI Brain Responses to Movies (Algonauts 2025 Report)
Robert Scholz, Kunal Bagga, Christine Ahrends, Carlo Alberto Barbano
https://arxiv.org/abs/2510.06235
Leveraging Language Semantics for Collaborative Filtering with TextGCN and TextGCN-MLP: Zero-Shot vs In-Domain Performance
Andrei Chernov, Haroon Wahab, Oleg Novitskij
https://arxiv.org/abs/2510.12461 …
A Solution to the Hierarchy Problem with Non-Linear Quantum Mechanics
David E. Kaplan, Surjeet Rajendran
https://arxiv.org/abs/2510.12030 https://arxiv.org…
MeTA-LoRA: Data-Efficient Multi-Task Fine-Tuning for Large Language Models
Bo Cheng, Xu Wang, Jinda Liu, Yi Chang, Yuan Wu
https://arxiv.org/abs/2510.11598 https://
Knowledge-Decoupled Functionally Invariant Path with Synthetic Personal Data for Personalized ASR
Yue Gu, Zhihao Du, Ying Shi, Jiqing Han, Yongjun He
https://arxiv.org/abs/2510.10401
Efficient In-Memory Acceleration of Sparse Block Diagonal LLMs
Jo\~ao Paulo Cardoso de Lima, Marc Dietrich, Jeronimo Castrillon, Asif Ali Khan
https://arxiv.org/abs/2510.11192 h…
GrASP: A Generalizable Address-based Semantic Prefetcher for Scalable Transactional and Analytical Workloads
Farzaneh Zirak, Farhana Choudhury, Renata Borovica-Gajic
https://arxiv.org/abs/2510.11011
Attack via Overfitting: 10-shot Benign Fine-tuning to Jailbreak LLMs
Zhixin Xie, Xurui Song, Jun Luo
https://arxiv.org/abs/2510.02833 https://arxiv.org/pdf…
Early Detection and Reduction of Memorisation for Domain Adaptation and Instruction Tuning
Dean L. Slack, Noura Al Moubayed
https://arxiv.org/abs/2510.11372 https://
Mira Murati's Thinking Machines Lab launches its first product, Tinker, which automates the creation of custom frontier AI models (Will Knight/Wired)
https://www.wired.com/story/thinking-machines-lab-first-product-fine-tune/
Flow of Knowledge: Federated Fine-Tuning of LLMs in Healthcare under Non-IID Conditions
Zeyu Chen, Yun Ji, Bowen Wang, Liwen Shi, Zijie Zeng, Sheng Zhang
https://arxiv.org/abs/2510.00543
How to Teach Large Multimodal Models New Skills
Zhen Zhu, Yiming Gong, Yao Xiao, Yaoyao Liu, Derek Hoiem
https://arxiv.org/abs/2510.08564 https://arxiv.org…
Learning from Convenience Samples: A Case Study on Fine-Tuning LLMs for Survey Non-response in the German Longitudinal Election Study
Tobias Holtdirk, Dennis Assenmacher, Arnim Bleier, Claudia Wagner
https://arxiv.org/abs/2509.25063
Self-supervised diffusion model fine-tuning for costate initialization using Markov chain Monte Carlo
Jannik Graebner, Ryne Beeson
https://arxiv.org/abs/2510.02527 https://
Understanding the Effects of Domain Finetuning on LLMs
Eshaan Tanwar, Deepak Nathani, William Yang Wang, Tanmoy Chakraborty
https://arxiv.org/abs/2510.09359 https://
CoIRL-AD: Collaborative-Competitive Imitation-Reinforcement Learning in Latent World Models for Autonomous Driving
Xiaoji Zheng, Ziyuan Yang, Yanhao Chen, Yuhang Peng, Yuanrong Tang, Gengyuan Liu, Bokui Chen, Jiangtao Gong
https://arxiv.org/abs/2510.12560
Enhancing Speech Emotion Recognition via Fine-Tuning Pre-Trained Models and Hyper-Parameter Optimisation
Aryan Golbaghi, Shuo Zhou
https://arxiv.org/abs/2510.07052 https://
Prompt, Synthesize, Fine-Tune: A Secure Code Generation Recipe
Junjie Li, Fazle Rabbi, Bo Yang, Song Wang, Jinqiu Yang
https://arxiv.org/abs/2510.07189 https://
Does LLM Focus on the Right Words? Diagnosing Language Bias in LLM-based Recommenders
Bohao Wang, Jiawei Chen, Feng Liu, Changwang Zhang, Jun Wang, Canghong Jin, Chun Chen, Can Wang
https://arxiv.org/abs/2510.10978
Proficiency-Aware Adaptation and Data Augmentation for Robust L2 ASR
Ling Sun, Charlotte Zhu, Shuju Shi
https://arxiv.org/abs/2510.10738 https://arxiv.org/…
Actions as Language: Fine-Tuning VLMs into VLAs Without Catastrophic Forgetting
Asher J. Hancock, Xindi Wu, Lihan Zha, Olga Russakovsky, Anirudha Majumdar
https://arxiv.org/abs/2509.22195
Valid Survey Simulations with Limited Human Data: The Roles of Prompting, Fine-Tuning, and Rectification
Stefan Krsteski, Giuseppe Russo, Serina Chang, Robert West, Kristina Gligori\'c
https://arxiv.org/abs/2510.11408
MetaBreak: Jailbreaking Online LLM Services via Special Token Manipulation
Wentian Zhu, Zhen Xiang, Wei Niu, Le Guan
https://arxiv.org/abs/2510.10271 https://
HES-SQL: Hybrid Reasoning for Efficient Text-to-SQL with Structural Skeleton Guidance
Suming Qiu, Jing Li, Zhicheng Zhou, Junjie Huang, Linyuan Qiu, Zhijie Sun
https://arxiv.org/abs/2510.08896
MEC$^3$O: Multi-Expert Consensus for Code Time Complexity Prediction
Joonghyuk Hahn, Soohan Lim, Yo-Sub Han
https://arxiv.org/abs/2510.09049 https://arxiv.…
Comparing fine-tuning strategies of MACE machine learning force field for modeling Li-ion diffusion in LiF for batteries
Nada Alghamdi, Paolo de Angelis, Pietro Asinari, Eliodoro Chiavazzo
https://arxiv.org/abs/2510.05020
A Deep Transfer Learning-Based Low-overhead Beam Prediction in Vehicle Communications
Zhiqiang Xiao, Yuwen Cao, Mondher Bouazizi, Tomoaki Ohtsuki, Shahid Mumtaz
https://arxiv.org/abs/2509.20659
Replaced article(s) found for cs.CV. https://arxiv.org/list/cs.CV/new
[6/8]:
- GeoVLM-R1: Reinforcement Fine-Tuning for Improved Remote Sensing Reasoning
Mustansar Fiaz, Hiyam Debary, Paolo Fraccaro, Danda Paudel, Luc Van Gool, Fahad Khan, Salman Khan
DeePAQ: A Perceptual Audio Quality Metric Based On Foundational Models and Weakly Supervised Learning
Guanxin Jiang, Andreas Brendel, Pablo M. Delgado, J\"urgen Herre
https://arxiv.org/abs/2510.12326
MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model
Prasanna Mayilvahanan, Ricardo Dominguez-Olmedo, Thadd\"aus Wiedemer, Wieland Brendel
https://arxiv.org/abs/2510.11653
Sci2Pol: Evaluating and Fine-tuning LLMs on Scientific-to-Policy Brief Generation
Weimin Wu, Alexander C. Furnas, Eddie Yang, Gefei Liu, Akhil Pandey Akella, Xuefeng Song, Dashun Wang, Han Liu
https://arxiv.org/abs/2509.21493
Teaching Language Models to Faithfully Express their Uncertainty
Bryan Eikema, Evgenia Ilia, Jos\'e G. C. de Souza, Chrysoula Zerva, Wilker Aziz
https://arxiv.org/abs/2510.12587
Fine-Tuning Jailbreaks under Highly Constrained Black-Box Settings: A Three-Pronged Approach
Xiangfang Li, Yu Wang, Bo Li
https://arxiv.org/abs/2510.01342 https://
Replaced article(s) found for cs.AI. https://arxiv.org/list/cs.AI/new
[5/7]:
- On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learn...
Zhang, Xie, Sun, Chen, Wang, Li, Ding, Zhou
Resource-Efficient Fine-Tuning of LLaMA-3.2-3B for Medical Chain-of-Thought Reasoning
Imran Mansha
https://arxiv.org/abs/2510.05003 https://arxiv.org/pdf/2…
Lightweight and Generalizable Acoustic Scene Representations via Contrastive Fine-Tuning and Distillation
Kuang Yuan, Yang Gao, Xilin Li, Xinhao Mei, Syavosh Zadissa, Tarun Pruthi, Saeed Bagheri Sereshki
https://arxiv.org/abs/2510.03728
AMAQ: Adaptive Mixed-bit Activation Quantization for Collaborative Parameter Efficient Fine-tuning
Yurun Song, Zhuoyi Yang, Ian G. Harris, Sangeetha Abdu Jyothi
https://arxiv.org/abs/2510.05468
Devstral: Fine-tuning Language Models for Coding Agent Applications
Abhinav Rastogi, Adam Yang, Albert Q. Jiang, Alexander H. Liu, Alexandre Sablayrolles, Am\'elie H\'eliou, Am\'elie Martin, Anmol Agarwal, Andy Ehrenberg, Andy Lo, Antoine Roux, Arthur Darcet, Arthur Mensch, Baptiste Bout, Baptiste Rozi\`ere, Baudouin De Monicault, Chris Bamford, Christian Wallenwein, Christophe Renaudin, Cl\'emence Lanfranchi, Cl\'ement Denoix, Corentin Barreau, Darius Dabert Devon …
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Chen Li, Zhantao Yang, Han Zhang, Fangyi Chen, Chenchen Zhu, Anudeepsekhar Bolimera, Marios Savvides
https://arxiv.org/abs/2510.05580
Fine-Tuning Bulk-oriented Universal Interatomic Potentials for Surfaces: Accuracy, Efficiency, and Forgetting Control
Jaekyun Hwang, Taehun Lee, Yonghyuk Lee, Su-Hyun Yoo
https://arxiv.org/abs/2509.25807
Multimodal Carotid Risk Stratification with Large Vision-Language Models: Benchmarking, Fine-Tuning, and Clinical Insights
Daphne Tsolissou, Theofanis Ganitidis, Konstantinos Mitsis, Stergios CHristodoulidis, Maria Vakalopoulou, Konstantina Nikita
https://arxiv.org/abs/2510.02922
TR2-D2: Tree Search Guided Trajectory-Aware Fine-Tuning for Discrete Diffusion
Sophia Tang, Yuchen Zhu, Molei Tao, Pranam Chatterjee
https://arxiv.org/abs/2509.25171 https://
Reasoning Pattern Matters: Learning to Reason without Human Rationales
Chaoxu Pang, Yixuan Cao, Ping Luo
https://arxiv.org/abs/2510.12643 https://arxiv.org…
Sample-Efficient Differentially Private Fine-Tuning via Gradient Matrix Denoising
Ali Dadsetan, Frank Rudzicz
https://arxiv.org/abs/2510.01137 https://arxi…
Data Efficient Adaptation in Large Language Models via Continuous Low-Rank Fine-Tuning
Xiao Han, Zimo Zhao, Wanyu Wang, Maolin Wang, Zitao Liu, Yi Chang, Xiangyu Zhao
https://arxiv.org/abs/2509.18942
Exploring Fine-Tuning of Large Audio Language Models for Spoken Language Understanding under Limited Speech data
Youngwon Choi, Jaeyoon Jung, Hyeonyu Kim, Huu-Kim Nguyen, Hwayeon Kim
https://arxiv.org/abs/2509.15389
Replaced article(s) found for cs.CV. https://arxiv.org/list/cs.CV/new
[4/5]:
- Fairness-Aware Fine-Tuning of Vision-Language Models for Medical Glaucoma Diagnosis
Zijian Gu, Yuxi Liu, Zhenhao Zhang, Song Wang
Probing Latent Knowledge Conflict for Faithful Retrieval-Augmented Generation
Linfeng Gao, Baolong Bi, Zheng Yuan, Le Wang, Zerui Chen, Zhimin Wei, Shenghua Liu, Qinggang Zhang, Jinsong Su
https://arxiv.org/abs/2510.12460
Safety Game: Balancing Safe and Informative Conversations with Blackbox Agentic AI using LP Solvers
Tuan Nguyen, Long Tran-Thanh
https://arxiv.org/abs/2510.09330 https://…
Fine-tuning Behavioral Cloning Policies with Preference-Based Reinforcement Learning
Ma\"el Macuglia, Paul Friedrich, Giorgia Ramponi
https://arxiv.org/abs/2509.26605 https…
FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts
Heming Zou, Yunliang Zang, Wutong Xu, Yao Zhu, Xiangyang Ji
https://arxiv.org/abs/2510.08396
BEFT: Bias-Efficient Fine-Tuning of Language Models
Baichuan Huang, Ananth Balashankar, Amir Aminifar
https://arxiv.org/abs/2509.15974 https://arxiv.org/pd…
AI-CNet3D: An Anatomically-Informed Cross-Attention Network with Multi-Task Consistency Fine-tuning for 3D Glaucoma Classification
Roshan Kenia, Anfei Li, Rishabh Srivastava, Kaveri A. Thakoor
https://arxiv.org/abs/2510.00882
DualTune: Decoupled Fine-Tuning for On-Device Agentic Systems
Rohan Kadekodi, Zhan Jin, Keisuke Kamahori, Yile Gu, Sean Khatiri, Noah H. Bayindirli, Sergey Gorbunov, Baris Kasikci
https://arxiv.org/abs/2510.00229
HINT: Helping Ineffective Rollouts Navigate Towards Effectiveness
Xinyi Wang, Jinyi Han, Zishang Jiang, Tingyun Li, Jiaqing Liang, Sihang Jiang, Zhaoqian Dai, Shuguang Ma, Fei Yu, Yanghua Xiao
https://arxiv.org/abs/2510.09388
BALF: Budgeted Activation-Aware Low-Rank Factorization for Fine-Tuning-Free Model Compression
David Gonz\'alez Mart\'inez
https://arxiv.org/abs/2509.25136 https://
SliceFine: The Universal Winning-Slice Hypothesis for Pretrained Networks
Md Kowsher, Ali O. Polat, Ehsan Mohammady Ardehaly, Mehrdad Salehi, Zia Ghiasi, Prasanth Murali, Chen Chen
https://arxiv.org/abs/2510.08513
Beyond Log Likelihood: Probability-Based Objectives for Supervised Fine-Tuning across the Model Capability Continuum
Gaotang Li, Ruizhong Qiu, Xiusi Chen, Heng Ji, Hanghang Tong
https://arxiv.org/abs/2510.00526
IA2: Alignment with ICL Activations Improves Supervised Fine-Tuning
Aayush Mishra, Daniel Khashabi, Anqi Liu
https://arxiv.org/abs/2509.22621 https://arxiv…
TempSamp-R1: Effective Temporal Sampling with Reinforcement Fine-Tuning for Video LLMs
Yunheng Li, Jing Cheng, Shaoyong Jia, Hangyi Kuang, Shaohui Jiao, Qibin Hou, Ming-Ming Cheng
https://arxiv.org/abs/2509.18056
Replaced article(s) found for cs.CL. https://arxiv.org/list/cs.CL/new
[1/4]:
- Privacy-Preserving Parameter-Efficient Fine-Tuning for Large Language Model Services
Yansong Li, Zhixing Tan, Paula Branco, Yang Liu
Symmetry-Aware Fully-Amortized Optimization with Scale Equivariant Graph Metanetworks
Bart Kuipers, Freek Byrman, Daniel Uyterlinde, Alejandro Garc\'ia-Castellanos
https://arxiv.org/abs/2510.08300 …
A Multi-Agent Framework for Stateful Inference-Time Search
Arshika Lalan, Rajat Ghosh, Aditya Kolsur, Debojyoti Dutta
https://arxiv.org/abs/2510.07147 https://
One-Token Rollout: Guiding Supervised Fine-Tuning of LLMs with Policy Gradient
Rui Ming, Haoyuan Wu, Shoubo Hu, Zhuolun He, Bei Yu
https://arxiv.org/abs/2509.26313 https://
Robust RGB-T Tracking via Learnable Visual Fourier Prompt Fine-tuning and Modality Fusion Prompt Generation
Hongtao Yang, Bineng Zhong, Qihua Liang, Zhiruo Zhu, Yaozong Zheng, Ning Li
https://arxiv.org/abs/2509.19733
Agent Learning via Early Experience
Kai Zhang, Xiangchao Chen, Bo Liu, Tianci Xue, Zeyi Liao, Zhihan Liu, Xiyao Wang, Yuting Ning, Zhaorun Chen, Xiaohan Fu, Jian Xie, Yuxuan Sun, Boyu Gou, Qi Qi, Zihang Meng, Jianwei Yang, Ning Zhang, Xian Li, Ashish Shah, Dat Huynh, Hengduo Li, Zi Yang, Sara Cao, Lawrence Jang, Shuyan Zhou, Jiacheng Zhu, Huan Sun, Jason Weston, Yu Su, Yifan Wu
Influence Functions for Efficient Data Selection in Reasoning
Prateek Humane, Paolo Cudrano, Daniel Z. Kaplan, Matteo Matteucci, Supriyo Chakraborty, Irina Rish
https://arxiv.org/abs/2510.06108
TiTok: Transfer Token-level Knowledge via Contrastive Excess to Transplant LoRA
Chanjoo Jung, Jaehyung Kim
https://arxiv.org/abs/2510.04682 https://arxiv.o…
Fine-Tuning Large Multimodal Models for Automatic Pronunciation Assessment
Ke Wang, Wenning Wei, Yan Deng, Lei He, Sheng Zhao
https://arxiv.org/abs/2509.15701 https://
InfiMed-Foundation: Pioneering Advanced Multimodal Medical Models with Compute-Efficient Pre-Training and Multi-Stage Fine-Tuning
Guanghao Zhu, Zhitian Hou, Zeyu Liu, Zhijie Sang, Congkai Xie, Hongxia Yang
https://arxiv.org/abs/2509.22261
Targeted Fine-Tuning of DNN-Based Receivers via Influence Functions
Marko Tuononen, Heikki Penttinen, Ville Hautam\"aki
https://arxiv.org/abs/2509.15950 https://
Family Matters: Language Transfer and Merging for Adapting Small LLMs to Faroese
Jenny Kunz, Iben Nyholm Debess, Annika Simonsen
https://arxiv.org/abs/2510.00810 https://…
Improving Reasoning for Diffusion Language Models via Group Diffusion Policy Optimization
Kevin Rojas, Jiahe Lin, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, Molei Tao, Wei Deng
https://arxiv.org/abs/2510.08554
Guided Star-Shaped Masked Diffusion
Viacheslav Meshchaninov, Egor Shibaev, Artem Makoian, Ivan Klimov, Danil Sheshenya, Andrei Malinin, Nikita Balagansky, Daniil Gavrilov, Aibek Alanov, Dmitry Vetrov
https://arxiv.org/abs/2510.08369
When Long Helps Short: How Context Length in Supervised Fine-tuning Affects Behavior of Large Language Models
Yingming Zheng, Hanqi Li, Kai Yu, Lu Chen
https://arxiv.org/abs/2509.18762
Explaining Fine Tuned LLMs via Counterfactuals A Knowledge Graph Driven Framework
Yucheng Wang, Ziyang Chen, Md Faisal Kabir
https://arxiv.org/abs/2509.21241 https://
Investigating the Representation of Backchannels and Fillers in Fine-tuned Language Models
Yu Wang, Leyi Lao, Langchu Huang, Gabriel Skantze, Yang Xu, Hendrik Buschmeier
https://arxiv.org/abs/2509.20237
AccurateRAG: A Framework for Building Accurate Retrieval-Augmented Question-Answering Applications
Linh The Nguyen, Chi Tran, Dung Ngoc Nguyen, Van-Cuong Pham, Hoang Ngo, Dat Quoc Nguyen
https://arxiv.org/abs/2510.02243
A method for improving multilingual quality and diversity of instruction fine-tuning datasets
Chunguang Zhao, Yilun Liu, Pufan Zeng, Yuanchang Luo, Shimin Tao, Minggui He, Weibin Meng, Song Xu, Ziang Chen, Chen Liu, Hongxia Ma, Li Zhang, Boxing Chen, Daimeng Wei
https://arxiv.org/abs/2509.15549
Finetune Once: Decoupling General & Domain Learning with Dynamic Boosted Annealing
Yang Tang, Ruijie Liu, Yifan Wang, Shiyu Li, Xi Chen
https://arxiv.org/abs/2509.26242 http…
Metaphor identification using large language models: A comparison of RAG, prompt engineering, and fine-tuning
Matteo Fuoli, Weihang Huang, Jeannette Littlemore, Sarah Turner, Ellen Wilding
https://arxiv.org/abs/2509.24866
Scaling LLM Multi-turn RL with End-to-end Summarization-based Context Management
Miao Lu, Weiwei Sun, Weihua Du, Zhan Ling, Xuesong Yao, Kang Liu, Jiecao Chen
https://arxiv.org/abs/2510.06727