
2025-10-14 11:46:48
Pharmacist: Safety Alignment Data Curation for Large Language Models against Harmful Fine-tuning
Guozhi Liu, Qi Mu, Tiansheng Huang, Xinhua Wang, Li Shen, Weiwei Lin, Zhang Li
https://arxiv.org/abs/2510.10085
Pharmacist: Safety Alignment Data Curation for Large Language Models against Harmful Fine-tuning
Guozhi Liu, Qi Mu, Tiansheng Huang, Xinhua Wang, Li Shen, Weiwei Lin, Zhang Li
https://arxiv.org/abs/2510.10085
Google announces Gemma 3 270M, a compact model designed for task-specific fine-tuning with strong capabilities in instruction following and text structuring (Google Developers Blog)
https://developers.googleblog.com/en/introducing-gemma-3-270m/
Understanding the Effects of Domain Finetuning on LLMs
Eshaan Tanwar, Deepak Nathani, William Yang Wang, Tanmoy Chakraborty
https://arxiv.org/abs/2510.09359 https://
NEFMind: Parameter-Efficient Fine-Tuning of Open-Source LLMs for Telecom APIs Automation
Zainab Khan, Ahmed Hussain, Mukesh Thakur, Arto Hellas, Panos Papadimitratos
https://arxiv.org/abs/2508.09240
PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection
Sijun Dong, Yuxuan Hu, LiBo Wang, Geng Chen, Xiaoliang Meng
https://arxiv.org/abs/2509.09572
MeTA-LoRA: Data-Efficient Multi-Task Fine-Tuning for Large Language Models
Bo Cheng, Xu Wang, Jinda Liu, Yi Chang, Yuan Wu
https://arxiv.org/abs/2510.11598 https://
TIT: A Tree-Structured Instruction Tuning Approach for LLM-Based Code Translation
He Jiang, Yufu Wang, Hao Lin, Peiyu Zou, Zhide Zhou, Ang Jia, Xiaochen Li, Zhilei Ren
https://arxiv.org/abs/2510.09400 …
Predicting Crystal Structures and Ionic Conductivity in Li$_{3}$YCl$_{6-x}$Br$_{x}$ Halide Solid Electrolytes Using a Fine-Tuned Machine Learning Interatomic Potential
Jonas B\"ohm, Aur\'elie Champagne
https://arxiv.org/abs/2510.09861
Fine-Tuning Large Language Models Using EEG Microstate Features for Mental Workload Assessment
Bujar Raufi
https://arxiv.org/abs/2508.07283 https://arxiv.o…
Safety Game: Balancing Safe and Informative Conversations with Blackbox Agentic AI using LP Solvers
Tuan Nguyen, Long Tran-Thanh
https://arxiv.org/abs/2510.09330 https://…
MEC$^3$O: Multi-Expert Consensus for Code Time Complexity Prediction
Joonghyuk Hahn, Soohan Lim, Yo-Sub Han
https://arxiv.org/abs/2510.09049 https://arxiv.…
Early Detection and Reduction of Memorisation for Domain Adaptation and Instruction Tuning
Dean L. Slack, Noura Al Moubayed
https://arxiv.org/abs/2510.11372 https://
DP-FedLoRA: Privacy-Enhanced Federated Fine-Tuning for On-Device Large Language Models
Honghui Xu, Shiva Shrestha, Wei Chen, Zhiyuan Li, Zhipeng Cai
https://arxiv.org/abs/2509.09097
Calibrating Generative Models
Henry D. Smith, Nathaniel L. Diamant, Brian L. Trippe
https://arxiv.org/abs/2510.10020 https://arxiv.org/pdf/2510.10020
G-IFT: A Gated Linear Unit adapter with Iterative Fine-Tuning for Low-Resource Children's Speaker Verification
Vishwas M. Shetty, Jiusi Zheng, Abeer Alwan
https://arxiv.org/abs/2508.07836
DogFit: Domain-guided Fine-tuning for Efficient Transfer Learning of Diffusion Models
Yara Bahram, Mohammadhadi Shateri, Eric Granger
https://arxiv.org/abs/2508.05685 https://…
Knowledge-Decoupled Functionally Invariant Path with Synthetic Personal Data for Personalized ASR
Yue Gu, Zhihao Du, Ying Shi, Jiqing Han, Yongjun He
https://arxiv.org/abs/2510.10401
Efficient In-Memory Acceleration of Sparse Block Diagonal LLMs
Jo\~ao Paulo Cardoso de Lima, Marc Dietrich, Jeronimo Castrillon, Asif Ali Khan
https://arxiv.org/abs/2510.11192 h…
HES-SQL: Hybrid Reasoning for Efficient Text-to-SQL with Structural Skeleton Guidance
Suming Qiu, Jing Li, Zhicheng Zhou, Junjie Huang, Linyuan Qiu, Zhijie Sun
https://arxiv.org/abs/2510.08896
Does LLM Focus on the Right Words? Diagnosing Language Bias in LLM-based Recommenders
Bohao Wang, Jiawei Chen, Feng Liu, Changwang Zhang, Jun Wang, Canghong Jin, Chun Chen, Can Wang
https://arxiv.org/abs/2510.10978
Phonon interference effects in GaAs-GaP superlattice nanowires
Chaitanya Arya, Johannes Trautvetter, Jose M. Sojo-Gordillo, Yashpreet Kaur, Valentina Zannier, Fabio Beltram, Tommaso Albrigi, Alicia Ruiz-Caridad, Lucia Sorba, Riccardo Rurali, Ilaria Zardo
https://arxiv.org/abs/2508.09556
Valid Survey Simulations with Limited Human Data: The Roles of Prompting, Fine-Tuning, and Rectification
Stefan Krsteski, Giuseppe Russo, Serina Chang, Robert West, Kristina Gligori\'c
https://arxiv.org/abs/2510.11408
CO-RFT: Efficient Fine-Tuning of Vision-Language-Action Models through Chunked Offline Reinforcement Learning
Dongchi Huang, Zhirui Fang, Tianle Zhang, Yihang Li, Lin Zhao, Chunhe Xia
https://arxiv.org/abs/2508.02219
Replaced article(s) found for cs.AI. https://arxiv.org/list/cs.AI/new
[5/7]:
- On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learn...
Zhang, Xie, Sun, Chen, Wang, Li, Ding, Zhou
HINT: Helping Ineffective Rollouts Navigate Towards Effectiveness
Xinyi Wang, Jinyi Han, Zishang Jiang, Tingyun Li, Jiaqing Liang, Sihang Jiang, Zhaoqian Dai, Shuguang Ma, Fei Yu, Yanghua Xiao
https://arxiv.org/abs/2510.09388
InstructPLM-mu: 1-Hour Fine-Tuning of ESM2 Beats ESM3 in Protein Mutation Predictions
Junde Xu, Yapin Shi, Lijun Lang, Taoyong Cui, Zhiming Zhang, Guangyong Chen, Jiezhong Qiu, Pheng-Ann Heng
https://arxiv.org/abs/2510.03370
Stacked Regression using Off-the-shelf, Stimulus-tuned and Fine-tuned Neural Networks for Predicting fMRI Brain Responses to Movies (Algonauts 2025 Report)
Robert Scholz, Kunal Bagga, Christine Ahrends, Carlo Alberto Barbano
https://arxiv.org/abs/2510.06235
[OT] Revealed: Apple is teaching its AI to adapt to the Trump era https://www.politico.eu/article/apple-teaching-artificial-intelligence-adapt-to-trump-era/ "updated guidelines on how the AI talks about diversity, equity and inclusion poli…
Proficiency-Aware Adaptation and Data Augmentation for Robust L2 ASR
Ling Sun, Charlotte Zhu, Shuju Shi
https://arxiv.org/abs/2510.10738 https://arxiv.org/…
Fine-Tuning Vision-Language Models for Markdown Conversion of Financial Tables in Malaysian Audited Financial Reports
Jin Khye Tan (Faculty of Computer Science,Information Technology, Universiti Malaya), En Jun Choong, Ethan Jeremiah Chitty, Yan Pheng Choo, John Hsin Yang Wong, Chern Eu Cheah
https://arxiv.org/abs/2508.05669
When FinTech Meets Privacy: Securing Financial LLMs with Differential Private Fine-Tuning
Sichen Zhu, Hoyeung Leung, Xiaoyi Wang, Jia Wei, Honghui Xu
https://arxiv.org/abs/2509.08995
GrASP: A Generalizable Address-based Semantic Prefetcher for Scalable Transactional and Analytical Workloads
Farzaneh Zirak, Farhana Choudhury, Renata Borovica-Gajic
https://arxiv.org/abs/2510.11011
MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model
Prasanna Mayilvahanan, Ricardo Dominguez-Olmedo, Thadd\"aus Wiedemer, Wieland Brendel
https://arxiv.org/abs/2510.11653
A Comprehensive Evaluation framework of Alignment Techniques for LLMs
Muneeza Azmat, Momin Abbas, Maysa Malfiza Garcia de Macedo, Marcelo Carpinette Grave, Luan Soares de Souza, Tiago Machado, Rogerio A de Paula, Raya Horesh, Yixin Chen, Heloisa Caroline de Souza Pereira Candello, Rebecka Nordenlow, Aminat Adebiyi
https://arxiv.org/abs/250…
MedReasoner: Reinforcement Learning Drives Reasoning Grounding from Clinical Thought to Pixel-Level Precision
Zhonghao Yan, Muxi Diao, Yuxuan Yang, Jiayuan Xu, Kaizhou Zhang, Ruoyan Jing, Lele Yang, Yanxi Liu, Kongming Liang, Zhanyu Ma
https://arxiv.org/abs/2508.08177
MetaBreak: Jailbreaking Online LLM Services via Special Token Manipulation
Wentian Zhu, Zhen Xiang, Wei Niu, Le Guan
https://arxiv.org/abs/2510.10271 https://
SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Haozhan Li, Yuxin Zuo, Jiale Yu, Yuhao Zhang, Zhaohui Yang, Kaiyan Zhang, Xuekai Zhu, Yuchen Zhang, Tianxing Chen, Ganqu Cui, Dehui Wang, Dingxiang Luo, Yuchen Fan, Youbang Sun, Jia Zeng, Jiangmiao Pang, Shanghang Zhang, Yu Wang, Yao Mu, Bowen Zhou, Ning Ding
https://arxiv.org/a…
Memo: Apple's March update to its AI training guidelines for data annotators marked DEI as a "controversial" topic and removed intolerance as "harmful" behavior (Océane Herrero/Politico)
https://www.politico.eu/article/apple-teac
Domain-Specific Fine-Tuning and Prompt-Based Learning: A Comparative Study for developing Natural Language-Based BIM Information Retrieval Systems
Han Gao, Timo Hartmann, Botao Zhong, Kai Lia, Hanbin Luo
https://arxiv.org/abs/2508.05676
Replaced article(s) found for eess.IV. https://arxiv.org/list/eess.IV/new
[1/2]:
- Accurate Measles Rash Detection via Vision Transformer Fine-Tuning
Qingguo Wang
Prompt, Synthesize, Fine-Tune: A Secure Code Generation Recipe
Junjie Li, Fazle Rabbi, Bo Yang, Song Wang, Jinqiu Yang
https://arxiv.org/abs/2510.07189 https://
CPO: Addressing Reward Ambiguity in Role-playing Dialogue via Comparative Policy Optimization
Xinge Ye, Rui Wang, Yuchuan Wu, Victor Ma, Feiteng Fang, Fei Huang, Yongbin Li
https://arxiv.org/abs/2508.09074
How to Teach Large Multimodal Models New Skills
Zhen Zhu, Yiming Gong, Yao Xiao, Yaoyao Liu, Derek Hoiem
https://arxiv.org/abs/2510.08564 https://arxiv.org…
You Share Beliefs, I Adapt: Progressive Heterogeneous Collaborative Perception
Hao Si, Ehsan Javanmardi, Manabu Tsukada
https://arxiv.org/abs/2509.09310 https://
DMFI: Dual-Modality Fine-Tuning and Inference Framework for LLM-Based Insider Threat Detection
Kaichuan Kong, Dongjie Liu, Xiaobo Jin, Guanggang Geng, Zhiying Li, Jian Weng
https://arxiv.org/abs/2508.05694
Bridging the Capability Gap: Joint Alignment Tuning for Harmonizing LLM-based Multi-Agent Systems
Minghang Zhu, Zhengliang Shi, Zhiwei Xu, Shiguang Wu, Lingjie Wang, Pengjie Ren, Zhaochun Ren, Zhumin Chen
https://arxiv.org/abs/2509.09629
Enhancing Speech Emotion Recognition via Fine-Tuning Pre-Trained Models and Hyper-Parameter Optimisation
Aryan Golbaghi, Shuo Zhou
https://arxiv.org/abs/2510.07052 https://
When Fine-Tuning is Not Enough: Lessons from HSAD on Hybrid and Adversarial Audio Spoof Detection
Bin Hu, Kunyang Huang, Daehan Kwak, Meng Xu, Kuan Huang
https://arxiv.org/abs/2509.07323
Mira Murati's Thinking Machines Lab launches its first product, Tinker, which automates the creation of custom frontier AI models (Will Knight/Wired)
https://www.wired.com/story/thinking-machines-lab-first-product-fine-tune/
A Survey on Training-free Alignment of Large Language Models
Birong Pan, Yongqi Li, Weiyu Zhang, Wenpeng Lu, Mayi Xu, Shen Zhou, Yuanyuan Zhu, Ming Zhong, Tieyun Qian
https://arxiv.org/abs/2508.09016
Replaced article(s) found for cs.CL. https://arxiv.org/list/cs.CL/new
[1/4]:
- Privacy-Preserving Parameter-Efficient Fine-Tuning for Large Language Model Services
Yansong Li, Zhixing Tan, Paula Branco, Yang Liu
Conditioning on PDE Parameters to Generalise Deep Learning Emulation of Stochastic and Chaotic Dynamics
Ira J. S. Shokar, Rich R. Kerswell, Peter H. Haynes
https://arxiv.org/abs/2509.09599
Zero-Shot Metric Depth Estimation via Monocular Visual-Inertial Rescaling for Autonomous Aerial Navigation
Steven Yang, Xiaoyu Tian, Kshitij Goel, Wennie Tabib
https://arxiv.org/abs/2509.08159
Low-Resource Fine-Tuning for Multi-Task Structured Information Extraction with a Billion-Parameter Instruction-Tuned Model
Yu Cheng Chih, Yong Hao Hou
https://arxiv.org/abs/2509.08381
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Chen Li, Zhantao Yang, Han Zhang, Fangyi Chen, Chenchen Zhu, Anudeepsekhar Bolimera, Marios Savvides
https://arxiv.org/abs/2510.05580
Leveraging Large Language Models for Rare Disease Named Entity Recognition
Nan Miles Xi, Yu Deng, Lin Wang
https://arxiv.org/abs/2508.09323 https://arxiv.o…
Effective Training Data Synthesis for Improving MLLM Chart Understanding
Yuwei Yang, Zeyu Zhang, Yunzhong Hou, Zhuowan Li, Gaowen Liu, Ali Payani, Yuan-Sen Ting, Liang Zheng
https://arxiv.org/abs/2508.06492
Surgical Knowledge Rewrite in Compact LLMs: An 'Unlearn-then-Learn' Strategy with ($IA^3$) for Localized Factual Modulation and Catastrophic Forgetting Mitigation
Stanley Ngugi
https://arxiv.org/abs/2508.07075
Attack via Overfitting: 10-shot Benign Fine-tuning to Jailbreak LLMs
Zhixin Xie, Xurui Song, Jun Luo
https://arxiv.org/abs/2510.02833 https://arxiv.org/pdf…
Assessing the Feasibility of Lightweight Whisper Models for Low-Resource Urdu Transcription
Abdul Rehman Antall, Naveed Akhtar
https://arxiv.org/abs/2508.09865 https://
Leveraging Transfer Learning and Mobile-enabled Convolutional Neural Networks for Improved Arabic Handwritten Character Recognition
Mohsine El Khayati, Ayyad Maafiri, Yassine Himeur, Hamzah Ali Alkhazaleh, Shadi Atalla, Wathiq Mansoor
https://arxiv.org/abs/2509.05019
UNH at CheckThat! 2025: Fine-tuning Vs Prompting in Claim Extraction
Joe Wilder, Nikhil Kadapala, Benji Xu, Mohammed Alsaadi, Aiden Parsons, Mitchell Rogers, Palash Agarwal, Adam Hassick, Laura Dietz
https://arxiv.org/abs/2509.06883
Systematic Optimization of Open Source Large Language Models for Mathematical Reasoning
Pranav Pawar, Dhwaj Jain, Varun Gupta, Kaustav Dedhia, Dashrath Kale, Sudhir Dhekane
https://arxiv.org/abs/2509.07238
MVPBench: A Benchmark and Fine-Tuning Framework for Aligning Large Language Models with Diverse Human Values
Yao Liang, Dongcheng Zhao, Feifei Zhao, Guobin Shen, Yuwei Wang, Dongqi Liang, Yi Zeng
https://arxiv.org/abs/2509.08022
Federated Fine-tuning of SAM-Med3D for MRI-based Dementia Classification
Kaouther Mouheb, Marawan Elbatel, Janne Papma, Geert Jan Biessels, Jurgen Claassen, Huub Middelkoop, Barbara van Munster, Wiesje van der Flier, Inez Ramakers, Stefan Klein, Esther E. Bron
https://arxiv.org/abs/2508.21458
FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts
Heming Zou, Yunliang Zang, Wutong Xu, Yao Zhu, Xiangyang Ji
https://arxiv.org/abs/2510.08396
A Study of Large Language Models for Patient Information Extraction: Model Architecture, Fine-Tuning Strategy, and Multi-task Instruction Tuning
Cheng Peng, Xinyu Dong, Mengxian Lyu, Daniel Paredes, Yaoyun Zhang, Yonghui Wu
https://arxiv.org/abs/2509.04753
zkLoRA: Fine-Tuning Large Language Models with Verifiable Security via Zero-Knowledge Proofs
Guofu Liao, Taotao Wang, Shengli Zhang, Jiqun Zhang, Shi Long, Dacheng Tao
https://arxiv.org/abs/2508.21393 …
AMAQ: Adaptive Mixed-bit Activation Quantization for Collaborative Parameter Efficient Fine-tuning
Yurun Song, Zhuoyi Yang, Ian G. Harris, Sangeetha Abdu Jyothi
https://arxiv.org/abs/2510.05468
Resource-Efficient Fine-Tuning of LLaMA-3.2-3B for Medical Chain-of-Thought Reasoning
Imran Mansha
https://arxiv.org/abs/2510.05003 https://arxiv.org/pdf/2…
Multimodal Carotid Risk Stratification with Large Vision-Language Models: Benchmarking, Fine-Tuning, and Clinical Insights
Daphne Tsolissou, Theofanis Ganitidis, Konstantinos Mitsis, Stergios CHristodoulidis, Maria Vakalopoulou, Konstantina Nikita
https://arxiv.org/abs/2510.02922
AntiDote: Bi-level Adversarial Training for Tamper-Resistant LLMs
Debdeep Sanyal, Manodeep Ray, Murari Mandal
https://arxiv.org/abs/2509.08000 https://arxi…
Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing
Jeffrey Amico, Gabriel Passamani Andrade, John Donaghy, Ben Fielding, Tristin Forbus, Harry Grieve, Semih Kara, Jari Kolehmainen, Yihua Lou, Christopher Nies, Edward Phillip Flores Nu\~no, Diogo Ortega, Shikhar Rastogi, Austin Virts, Matthew J. Wright
https://
Fine-Tuning Jailbreaks under Highly Constrained Black-Box Settings: A Three-Pronged Approach
Xiangfang Li, Yu Wang, Bo Li
https://arxiv.org/abs/2510.01342 https://
SliceFine: The Universal Winning-Slice Hypothesis for Pretrained Networks
Md Kowsher, Ali O. Polat, Ehsan Mohammady Ardehaly, Mehrdad Salehi, Zia Ghiasi, Prasanth Murali, Chen Chen
https://arxiv.org/abs/2510.08513
L1RA: Dynamic Rank Assignment in LoRA Fine-Tuning
Raul Singh, Nicolo Brunello, Vincenzo Scotti, Mark James Carman
https://arxiv.org/abs/2509.04884 https://…
AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Junjie Ye, Jiazheng Zhang, Wenxiang Chen, Wei He, Yiwen Ding, Guanyu Li, Zehui Chen, Zhengyin Du, Xuesong Yao, Yufei Xu, Jiecao Chen, Tao Gui, Zuxuan Wu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang
Noise or Nuance: An Investigation Into Useful Information and Filtering For LLM Driven AKBC
Alex Clay, Ernesto Jim\'enez-Ruiz, Pranava Madhyastha
https://arxiv.org/abs/2509.08903
Are LLMs Enough for Hyperpartisan, Fake, Polarized and Harmful Content Detection? Evaluating In-Context Learning vs. Fine-Tuning
Michele Joshua Maggini, Dhia Merzougui, Rabiraj Bandyopadhyay, Ga\"el Dias, Fabrice Maurel, Pablo Gamallo
https://arxiv.org/abs/2509.07768
A Multi-Agent Framework for Stateful Inference-Time Search
Arshika Lalan, Rajat Ghosh, Aditya Kolsur, Debojyoti Dutta
https://arxiv.org/abs/2510.07147 https://
Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
Piyush Pant
https://arxiv.org/abs/2509.09055 https://arxiv.org/pdf/2509.09055…
RL's Razor: Why Online Reinforcement Learning Forgets Less
Idan Shenfeld, Jyothish Pari, Pulkit Agrawal
https://arxiv.org/abs/2509.04259 https://arxiv.…
From Detection to Mitigation: Addressing Gender Bias in Chinese Texts via Efficient Tuning and Voting-Based Rebalancing
Chengyan Wu, Yiqiang Cai, Yufei Cheng, Yun Xue
https://arxiv.org/abs/2509.07889
Learning the Topic, Not the Language: How LLMs Classify Online Immigration Discourse Across Languages
Andrea Nasuto, Stefano Maria Iacus, Francisco Rowe, Devika Jain
https://arxiv.org/abs/2508.06435
Sample-Efficient Differentially Private Fine-Tuning via Gradient Matrix Denoising
Ali Dadsetan, Frank Rudzicz
https://arxiv.org/abs/2510.01137 https://arxi…
Towards EnergyGPT: A Large Language Model Specialized for the Energy Sector
Amal Chebbi, Babajide Kolade
https://arxiv.org/abs/2509.07177 https://arxiv.org…
TR2-D2: Tree Search Guided Trajectory-Aware Fine-Tuning for Discrete Diffusion
Sophia Tang, Yuchen Zhu, Molei Tao, Pranam Chatterjee
https://arxiv.org/abs/2509.25171 https://
DeMeVa at LeWiDi-2025: Modeling Perspectives with In-Context Learning and Label Distribution Learning
Daniil Ignatev, Nan Li, Hugh Mee Wong, Anh Dang, Shane Kaszefski Yaschuk
https://arxiv.org/abs/2509.09524
Influence Functions for Efficient Data Selection in Reasoning
Prateek Humane, Paolo Cudrano, Daniel Z. Kaplan, Matteo Matteucci, Supriyo Chakraborty, Irina Rish
https://arxiv.org/abs/2510.06108
Anchoring Refusal Direction: Mitigating Safety Risks in Tuning via Projection Constraint
Yanrui Du, Fenglei Fan, Sendong Zhao, Jiawei Cao, Qika Lin, Kai He, Ting Liu, Bing Qin, Mengling Feng
https://arxiv.org/abs/2509.06795
Does This Look Familiar to You? Knowledge Analysis via Model Internal Representations
Sihyun Park
https://arxiv.org/abs/2509.07311 https://arxiv.org/pdf/25…
Not All Parameters Are Created Equal: Smart Isolation Boosts Fine-Tuning Performance
Yao Wang, Di Liang, Minlong Peng
https://arxiv.org/abs/2508.21741 https://
SPFT-SQL: Enhancing Large Language Model for Text-to-SQL Parsing by Self-Play Fine-Tuning
Yuhao Zhang, Shaoming Duan, Jinhang Su, Chuanyi Liu, Peiyi Han
https://arxiv.org/abs/2509.03937
Small Open Models Achieve Near Parity with Large Models in Low Resource Literary Translation at a Fraction of the Cost
Mihai Nadas, Laura Diosan, Andreea Tomescu, Andrei Piscoran
https://arxiv.org/abs/2509.07829
ALLabel: Three-stage Active Learning for LLM-based Entity Recognition using Demonstration Retrieval
Zihan Chen, Lei Shi, Weize Wu, Qiji Zhou, Yue Zhang
https://arxiv.org/abs/2509.07512
Post-training for Efficient Communication via Convention Formation
Yilun Hua, Evan Wang, Yoav Artzi
https://arxiv.org/abs/2508.06482 https://arxiv.org/pdf/…
MSLEF: Multi-Segment LLM Ensemble Finetuning in Recruitment
Omar Walid, Mohamed T. Younes, Khaled Shaban, Mai Hassan, Ali Hamdi
https://arxiv.org/abs/2509.06200 https://
BEFT: Bias-Efficient Fine-Tuning of Language Models
Baichuan Huang, Ananth Balashankar, Amir Aminifar
https://arxiv.org/abs/2509.15974 https://arxiv.org/pd…
TiTok: Transfer Token-level Knowledge via Contrastive Excess to Transplant LoRA
Chanjoo Jung, Jaehyung Kim
https://arxiv.org/abs/2510.04682 https://arxiv.o…