When Algorithms Infer Gender: Revisiting Computational Phenotyping with Electronic Health Records Data
Jessica Gronsbell, Hilary Thurston, Lillian Dong, Vanessa Ferguson, Diksha Sen Chaudhury, Braden O'Neill, Katrina S. Sha, Rebecca Bonneville
https://arxiv.org/abs/2508.14150
A deep learning framework for predicting functional visual performance in bionic eye users https://www.biorxiv.org/content/10.1101/2025.06.23.660990v1
VisionLaw: Inferring Interpretable Intrinsic Dynamics from Visual Observations via Bilevel Optimization
Jailing Lin, Shu Jiang, Qingyuan Zeng, Zhenzhong Wang, Min Jiang
https://arxiv.org/abs/2508.13792
KGN-Pro: Keypoint-Based Grasp Prediction through Probabilistic 2D-3D Correspondence Learning
Bingran Chen, Baorun Li, Jian Yang, Yong Liu, Guangyao Zhai
https://arxiv.org/abs/2507.14820
Beyond the Nyquist frequency: Asteroseismic catalog of undersampled Kepler late subgiants and early red giants
B. Liagre, R. A. Garc\'ia, S. Mathur, M. H. Pinsonneault, A. Serenelli, J. C. Zinn, K. Cao, D. Godoy-Rivera, J. Tayar, P. G. Beck, D. H. Grossmann, D. B. Palakkatharappil
https://arxiv.org/abs/2508.15654
HIP: Model-Agnostic Hypergraph Influence Prediction via Distance-Centrality Fusion and Neural ODEs
Su-Su Zhang, JinFeng Xie, Yang Chen, Min Gao, Cong Li, Chuang Liu, Xiu-Xiu Zhan
https://arxiv.org/abs/2508.15312
Demonstration of an integral method for estimating wall shear stress in complex high-speed flows
Mateus A. R. Braga, Robyn L. Macdonald
https://arxiv.org/abs/2508.15024 https://…
Knowledge-Driven Hallucination in Large Language Models: An Empirical Study on Process Modeling
Humam Kourani, Anton Antonov, Alessandro Berti, Wil M. P. van der Aalst
https://arxiv.org/abs/2509.15336 …
Cosmology-informed Neural Networks to infer dark energy equation-of-state
Anshul Verma, Shashwat Sourav, Pavan K. Aluri, David F. Mota
https://arxiv.org/abs/2508.12032 https://
SALT4Decompile: Inferring Source-level Abstract Logic Tree for LLM-Based Binary Decompilation
Yongpan Wang, Xin Xu, Xiaojie Zhu, Xiaodong Gu, Beijun Shen
https://arxiv.org/abs/2509.14646
The same special effect as Sutekh's dust of death. Tempted to infer an in-story relationship. #BBC3 #DoctorWho
Is This News Still Interesting to You?: Lifetime-aware Interest Matching for News Recommendation
Seongeun Ryu, Yunyong Ko, Sang-Wook Kim
https://arxiv.org/abs/2508.13064 https:/…
RF-LSCM: Pushing Radiance Fields to Multi-Domain Localized Statistical Channel Modeling for Cellular Network Optimization
Bingsheng Peng, Shutao Zhang, Xi Zheng, Ye Xue, Xinyu Qin, Tsung-Hui Chang
https://arxiv.org/abs/2509.13686
VADER: A Variational Autoencoder to Infer Planetary Masses and Gas-Dust Disk Properties Around Young Stars
Sayed Shafaat Mahmud, Sayantan Auddy, Neal Turner, Jeffrey S. Bary
https://arxiv.org/abs/2509.12324
A Bayesian approach to time-domain Photonic Doppler Velocimetry
J. R. Allison (First Light Fusion Ltd), R. Bordas (First Light Fusion Ltd), J. Read (First Light Fusion Ltd), G. Burdiak (First Light Fusion Ltd), V. Beltr\'an (First Light Fusion Ltd), N. Joiner (First Light Fusion Ltd), H. Doyle (First Light Fusion Ltd), N. Hawker (First Light Fusion Ltd), J. Skidmore (First Light Fusion Ltd), T. Ao (Sandia National Laboratories), A. Porwitzky (Sandia National Laboratories), D. Dolan…
Control of a commercial vehicle by a tetraplegic human using a bimanual brain-computer interface
Xinyun Zou, Jorge Gamez, Meghna Menon, Phillip Ring, Chadwick Boulay, Likhith Chitneni, Jackson Brennecke, Shana R. Melby, Gracy Kureel, Kelsie Pejsa, Emily R. Rosario, Ausaf A. Bari, Aniruddh Ravindran, Tyson Aflalo, Spencer S. Kellis, Dimitar Filev, Florian Solzbacher, Richard A. Andersen
Inhomogeneous continuous-time Markov chains to infer flexible time-varying evolutionary rates
Pratyusa Datta, Philippe Lemey, Marc A. Suchard
https://arxiv.org/abs/2510.11982 ht…
A Classification-Driven Likelihood Ratio Method for Familial DNA Testing
Akaraphon Jantaraphum, Chanagarn Laoiam, Budsaba Rerkamnuaychoke, Jittima Shotivaranon, Monchai Kooakachai
https://arxiv.org/abs/2508.15579
INFER : Learning Implicit Neural Frequency Response Fields for Confined Car Cabin
Harshvardhan C. Takawale, Nirupam Roy, Phil Brown
https://arxiv.org/abs/2510.07442 https://
Beyond PII: How Users Attempt to Estimate and Mitigate Implicit LLM Inference
Synthia Wang, Sai Teja Peddinti, Nina Taft, Nick Feamster
https://arxiv.org/abs/2509.12152 https://…
Beyond Postconditions: Can Large Language Models infer Formal Contracts for Automatic Software Verification?
Cedric Richter, Heike Wehrheim
https://arxiv.org/abs/2510.12702 http…
Narrowing the discovery space of the cosmological 21-cm signal using multi-wavelength constraints
Jiten Dhandha, Anastasia Fialkov, Thomas Gessey-Jones, Harry T. J. Bevins, Sandro Tacchella, Simon Pochinda, Eloy de Lera Acedo, Saurabh Singh, Rennan Barkana
https://arxiv.org/abs/2508.13761
Deciphering the global production network from cross-border firm transactions
Neave O'Clery, Ben Radcliffe-Brown, Thomas Spencer, Daniel Tarling-Hunter
https://arxiv.org/abs/2508.12315
Crosslisted article(s) found for astro-ph.IM. https://arxiv.org/list/astro-ph.IM/new
[1/1]:
- VADER: A Variational Autoencoder to Infer Planetary Masses and Gas-Dust Disk Properties Around Yo...
Sayed Shafaat Mahmud, Sayantan Auddy, Neal Turner, Jeffrey S. Bary
Enhancing Situational Awareness in Wearable Audio Devices Using a Lightweight Sound Event Localization and Detection System
Jun-Wei Yeow, Ee-Leng Tan, Santi Peksi, Zhen-Ting Ong, Woon-Seng Gan
https://arxiv.org/abs/2509.14650
Utilizing Vision-Language Models as Action Models for Intent Recognition and Assistance
Cesar Alan Contreras, Manolis Chiou, Alireza Rastegarpanah, Michal Szulik, Rustam Stolkin
https://arxiv.org/abs/2508.11093
An Explorative Study on Distributed Computing Techniques in Training and Inference of Large Language Models
Sheikh Azizul Hakim, Saem Hasan
https://arxiv.org/abs/2510.11211 http…
End-to-End 4D Heart Mesh Recovery Across Full-Stack and Sparse Cardiac MRI
Yihong Chen, Jiancheng Yang, Deniz Sayin Mercadier, Hieu Le, Juerg Schwitter, Pascal Fua
https://arxiv.org/abs/2509.12090
Learning to Restore Heisenberg Limit in Noisy Quantum Sensing via Quantum Digital Twin
Hang Xu, Tailong Xiao, Jingzheng Huang, Jianping Fan, Guihua Zeng
https://arxiv.org/abs/2508.11198
Quantifying Mental States in Work Environment: Mathematical Perspectives
Aymen Balti, Assane Wade, Abdelatif Oujbara, M. A., Aziz-Alaoui, Hicham Bellarabi, Frederic Dutertre, Benjamin Ambrosio
https://arxiv.org/abs/2509.12162
Redefining Website Fingerprinting Attacks With Multiagent LLMs
Chuxu Song, Dheekshith Dev Manohar Mekala, Hao Wang, Richard Martin
https://arxiv.org/abs/2509.12462 https://
Bayesian Inference of Gravity through Realistic 3D Modeling of Wide Binary Orbits: General Algorithm and a Pilot Study with HARPS Radial Velocities
Kyu-Hyun Chae
https://arxiv.org/abs/2508.11996
SLiNT: Structure-aware Language Model with Injection and Contrastive Training for Knowledge Graph Completion
Mengxue Yang, Chun Yang, Jiaqi Zhu, Jiafan Li, Jingqi Zhang, Yuyang Li, Ying Li
https://arxiv.org/abs/2509.06531
I suspect we’re doing something similar to the tank classifier when we ascribe intelligence to AIs: there are patterns such as (for example) grammatical correctness which we •associate• with this abstract thing called “intelligence,” and we thus mis-infer the existence of everything else we associate with the notion of “intelligence” when we see (for example) correct grammar.
Or should we just call the machine intelligent because we classify it as intelligence because our brains, which we assume are intelligent, think it fits the pattern of intelligence? And now you see what the OP means about “begging the question of intelligence.”
Constraining Cosmology with Double-Source-Plane Strong Gravitational Lenses From the AGEL Survey
Duncan J. Bowden, Nandini Sahu, Anowar J. Shajib, Kim-Vy Tran, Tania M. Barone, Keerthi Vasan G. C., Daniel J. Ballard, Thomas E. Collett, Faith Dalessandro, Giovanni Ferrami, Karl Glazebrook, William J. Gottemoller, Leena Iwamoto, Tucker Jones, Glenn G. Kacprzak, Geraint F. Lewis, Haven McIntosh-Lombardo, Hannah Skobe, Sherry H. Suyu, Sarah M. Sweet
Crosslisted article(s) found for q-bio.PE. https://arxiv.org/list/q-bio.PE/new
[1/1]:
- Inhomogeneous continuous-time Markov chains to infer flexible time-varying evolutionary rates
Pratyusa Datta, Philippe Lemey, Marc A. Suchard
Beyond Self-Regulated Learning Processes: Unveiling Hidden Tactics in Generative AI-Assisted Writing
Kaixun Yang, Yizhou Fan, Luzhen Tang, Mladen Rakovi\'c, Xinyu Li, Dragan Ga\v{s}evi\'c, Guanliang Chen
https://arxiv.org/abs/2508.10310
Tight correlation of star formation with [Ci] and CO lines across cosmic time
Theodoros Topkaras, Thomas G. Bisbas, Zhi-Yu Zhang, V. Ossenkopf-Okada
https://arxiv.org/abs/2508.09951
Volatile-bearing mineral atmospheres of hot rocky exoplanets as probes of interior state and composition
Fabian L. Seidler, Paolo A. Sossi, Dan J. Bower, Brice-Olivier Demory
https://arxiv.org/abs/2509.13610
SemSteDiff: Generative Diffusion Model-based Coverless Semantic Steganography Communication
Song Gao, Rui Meng, Xiaodong Xu, Haixiao Gao, Yiming Liu, Chenyuan Feng, Ping Zhang, Tony Q. S. Quek, Dusit Niyato
https://arxiv.org/abs/2509.04803
What Do Agents Think Others Would Do? Level-2 Inverse Games for Inferring Agents' Estimates of Others' Objectives
Hamzah I. Khan, Jingqi Li, David Fridovich-Keil
https://arxiv.org/abs/2508.03824
Controlling Intent Expressiveness in Robot Motion with Diffusion Models
Wenli Shi, Clemence Grislain, Olivier Sigaud, Mohamed Chetouani
https://arxiv.org/abs/2510.12370 https://…
DCHO: A Decomposition-Composition Framework for Predicting Higher-Order Brain Connectivity to Enhance Diverse Downstream Applications
Weibin Li, Wendu Li, Quanying Liu
https://arxiv.org/abs/2509.09696 …
A framework for realisable data-driven active flow control using model predictive control applied to a simplified truck wake
Alberto Solera-Rico, Carlos Sanmiguel Vila, Stefano Discetti
https://arxiv.org/abs/2510.11600
The velocity field of the Scorpius-Centaurus OB association
S. Hutschenreuter (University of Vienna, Department of Astrophysics), J. Alves (University of Vienna, Department of Astrophysics), L. Posch (University of Vienna, Department of Astrophysics), J. Gro{\ss}schedl (Astronomical Institute of the Czech Academy of Sciences), M. Piecka (University of Vienna, Department of Astrophysics), N. Miret-Roig (Departament de F\'isica Qu\`antica i Astrof\'isica), S. Ratzenb\"ock (C…
HoMer: Addressing Heterogeneities by Modeling Sequential and Set-wise Contexts for CTR Prediction
Shuwei Chen, Jiajun Cui, Zhengqi Xu, Fan Zhang, Jiangke Fan, Teng Zhang, Xingxing Wang
https://arxiv.org/abs/2510.11100
Selective KV-Cache Sharing to Mitigate Timing Side-Channels in LLM Inference
Kexin Chu, Zecheng Lin, Dawei Xiang, Zixu Shen, Jianchang Su, Cheng Chu, Yiwei Yang, Wenhui Zhang, Wenfei Wu, Wei Zhang
https://arxiv.org/abs/2508.08438
Align-then-Slide: A complete evaluation framework for Ultra-Long Document-Level Machine Translation
Jiaxin Guo, Daimeng Wei, Yuanchang Luo, Xiaoyu Chen, Zhanglin Wu, Huan Yang, Hengchao Shang, Zongyao Li, Zhiqiang Rao, Jinlong Yang, Hao Yang
https://arxiv.org/abs/2509.03809
The Alignment Auditor: A Bayesian Framework for Verifying and Refining LLM Objectives
Matthieu Bou, Nyal Patel, Arjun Jagota, Satyapriya Krishna, Sonali Parbhoo
https://arxiv.org/abs/2510.06096
Trustworthy scientific inference for inverse problems with generative models
James Carzon, Luca Masserano, Joshua D. Ingram, Alex Shen, Antonio Carlos Herling Ribeiro Junior, Tommaso Dorigo, Michele Doro, Joshua S. Speagle, Rafael Izbicki, Ann B. Lee
https://arxiv.org/abs/2508.02602
Improving GUI Grounding with Explicit Position-to-Coordinate Mapping
Suyuchen Wang, Tianyu Zhang, Ahmed Masry, Christopher Pal, Spandana Gella, Bang Liu, Perouz Taslakian
https://arxiv.org/abs/2510.03230
Data Dependency Inference for Industrial Code Generation Based on UML Sequence Diagrams
Wenxin Mao, Zhitao Wang Long Wang, Sirong Chen, Cuiyun Gao, Luyang Cao, Ziming Liu, Qiming Zhang, Jun Zhou, Zhi Jin
https://arxiv.org/abs/2508.03379
Label Inference Attacks against Federated Unlearning
Wei Wang, Xiangyun Tang, Yajie Wang, Yijing Lin, Tao Zhang, Meng Shen, Dusit Niyato, Liehuang Zhu
https://arxiv.org/abs/2508.06789
LLMs and their Limited Theory of Mind: Evaluating Mental State Annotations in Situated Dialogue
Katharine Kowalyshyn, Matthias Scheutz
https://arxiv.org/abs/2509.02292 https://
Constraining Active Galactic Nucleus Jets with Spectrum and Core Shift: The Case of M87
Kouichi Hirotani, Hsien Shang, Ruben Krasnopolsky, Satoki Matsushita, Britton Jeter, Keiichi Asada
https://arxiv.org/abs/2508.06158
Whole Body Model Predictive Control for Spin-Aware Quadrupedal Table Tennis
David Nguyen, Zulfiqar Zaidi, Kevin Karol, Jessica Hodgins, Zhaoming Xie
https://arxiv.org/abs/2510.08754
Cross-correlation of Luminous Red Galaxies with ML-selected AGN in HSC-SSP III: HOD Parameters for Type I and Type II Quasars
Rodrigo C\'ordova Rosado, Andy D. Goulding, Jenny E. Greene, Nickolas Kokron, Andrina Nicola, Michael A. Strauss, Ryan C. Hickox
https://arxiv.org/abs/2510.11780
Generation and annotation of item usage scenarios in e-commerce using large language models
Madoka Hagiri, Kazushi Okamoto, Koki Karube, Kei Harada, Atsushi Shibata
https://arxiv.org/abs/2510.07885
Cosmology Likelihood for Observables in \Euclid (CLOE). 1. Theoretical recipe
Collaboration, Cardone, Joudaki, Blot, Bonici, Camera, Ca\~nas-Herrera, Carrilho, Casas, Davini, Di Domizio, Farrens, Goh, Beauchamps, Ili\'c, Keil, Le Brun, Martinelli, Moretti, Pettorino, Pezzotta, S\'anchez, Sakr, Sciotti, Tanidis, Tutusaus, Ajani, Crocce, Giocoli, Legrand, Lembo, Lesci, Girones, Nouri-Zonoz, Pamuk, Tsedrik, Bel, Carbone, Duncan, Kilbinger, Lacasa, Lattanzi, Sapone, Sellentin, Tayl…
Exposing LLM User Privacy via Traffic Fingerprint Analysis: A Study of Privacy Risks in LLM Agent Interactions
Yixiang Zhang, Xinhao Deng, Zhongyi Gu, Yihao Chen, Ke Xu, Qi Li, Jianping Wu
https://arxiv.org/abs/2510.07176
Out-of-Context Abduction: LLMs Make Inferences About Procedural Data Leveraging Declarative Facts in Earlier Training Data
Sohaib Imran, Rob Lamb, Peter M. Atkinson
https://arxiv.org/abs/2508.00741
What's the Buzz About GX 13 1? Constraining Coronal Geometry with QUEEN-BEE: A Bayesian Nested Sampling Framework for X-ray Polarization Rotation Analysis
Swati Ravi, Mason Ng, Herman L. Marshall, Andrea Gnarini
https://arxiv.org/abs/2509.07059
Replaced article(s) found for cs.CV. https://arxiv.org/list/cs.CV/new
[1/11]:
- Learning to Infer Unseen Single-/Multi-Attribute-Object Compositions with Graph Networks
Hui Chen, Jingjing Jiang, Nanning Zheng
Bilinear relational structure fixes reversal curse and enables consistent model editing
Dong-Kyum Kim, Minsung Kim, Jea Kwon, Nakyeong Yang, Meeyoung Cha
https://arxiv.org/abs/2509.21993
Vi-TacMan: Articulated Object Manipulation via Vision and Touch
Leiyao Cui, Zihang Zhao, Sirui Xie, Wenhuan Zhang, Zhi Han, Yixin Zhu
https://arxiv.org/abs/2510.06339 https://…
RUBIES spectroscopically confirms the high number density of quiescent galaxies from $\mathbf{2<z<5}$
Yunchong Zhang, Anna de Graaff, David J. Setton, Sedona H. Price, Rachel Bezanson, Claudia del P. Lagos, Sam E. Cutler, Ian McConachie, Nikko J. Cleri, Olivia R. Cooper, Rashmi Gottumukkala, Jenny E. Greene, Michaela Hirschmann, Gourav Khullar, Ivo Labbe, Joel Leja, Michael V. Maseda, Jorryt Matthee, Tim B. Miller, Themiya Nanayakkara, Katherine A. Suess, Bingjie Wang, Katherine …
WiFinger: Fingerprinting Noisy IoT Event Traffic Using Packet-level Sequence Matching
Ronghua Li, Shinan Liu, Haibo Hu, Qingqing Ye, Nick Feamster
https://arxiv.org/abs/2508.03151
Magnetic fields in galactic environments probed by Fast Radio Bursts
Ilya S. Khrykin, Nicolas Tejos, J. Xavier Prochaska, Alexandra Mannings, Lluis Mas-Ribas, Kentaro Nagamine, Khee-Gan Lee, Bryan Gaensler, Zhao Joseph Zhang, Lucas Bernales-Cortes
https://arxiv.org/abs/2509.08896
Detection of colour variations from gravitational microlensing observations in the quadruple quasar HE0435-1223: Implications for the accretion disk
Christian Sorgenfrei, Robert W. Schmidt, Joachim Wambsganss
https://arxiv.org/abs/2509.09341
Articulated Object Estimation in the Wild
Abdelrhman Werby, Martin B\"uchner, Adrian R\"ofer, Chenguang Huang, Wolfram Burgard, Abhinav Valada
https://arxiv.org/abs/2509.01708