
2025-06-17 10:54:18
An Easily Tunable Approach to Robust and Sparse High-Dimensional Linear Regression
Takeyuki Sasai, Hironori Fujisawa
https://arxiv.org/abs/2506.12591 https…
An Easily Tunable Approach to Robust and Sparse High-Dimensional Linear Regression
Takeyuki Sasai, Hironori Fujisawa
https://arxiv.org/abs/2506.12591 https…
High-dimensional regression with outcomes of mixed-type using the multivariate spike-and-slab LASSO
Soham Ghosh, Sameer K. Deshpande
https://arxiv.org/abs/2506.13007
Approaching Optimality for Solving Dense Linear Systems with Low-Rank Structure
Micha{\l} Derezi\'nski, Aaron Sidford
https://arxiv.org/abs/2507.11724 …
Fast and Efficient Implementation of the Maximum Likelihood Estimation for the Linear Regression with Gaussian Model Uncertainty
Ruohai Guo, Jiang Zhu, Xing Jiang, Fengzhong Qu
https://arxiv.org/abs/2507.11249
Algorithm Design and Comparative Test of Natural Gradient Gaussian Approximation Filter
Wenhan Cao, Tianyi Zhang, Shengbo Eben Li
https://arxiv.org/abs/2507.11872
Projection-based multifidelity linear regression for data-scarce applications
Vignesh Sella, Julie Pham, Karen Willcox, Anirban Chaudhuri
https://arxiv.org/abs/2508.08517 https:…
To What Extent Can Public Equity Indices Statistically Hedge Real Purchasing Power Loss in Compounded Structural Emerging-Market Crises? An Explainable ML-Based Assessment
Artem Alkhamov, Boris Kriuk
https://arxiv.org/abs/2507.13055
Approximating Euler Totient Function using Linear Regression on RSA moduli
Gilda Rech Bansimba, Regis F. Babindamana, Beni Blaug N. Ibara
https://arxiv.org/abs/2507.06706
Let's play POLO: Integrating the probability of lesion origin into proton treatment plan optimization for low-grade glioma patients
Tim Ortkamp, Habiba Sallem, Semi Harrabi, Martin Frank, Oliver J\"akel, Julia Bauer, Niklas Wahl
https://arxiv.org/abs/2506.13539
Inductance Estimation for High-Power Multilayer Rectangle Planar Windings
Theofilos Papadopoulos, Antonios Antonopoulos
https://arxiv.org/abs/2507.12082 ht…
Let the Tree Decide: FABART A Non-Parametric Factor Model
Sofia Velasco
https://arxiv.org/abs/2506.11551 https://arxiv.org/pdf/2506.1…
Black hole/quantum machine learning correspondence
Jae-Weon Lee, Zae Young Kim
https://arxiv.org/abs/2506.09678 https://arxiv.org/pdf…
Correction of estimator bias in linear regression with categorical covariates with classification error
Alexandre Garcia Dias, Mariana Rodrigues Motta, Alexandre Hild Aono
https://arxiv.org/abs/2507.07245
Semi-parametric Functional Classification via Path Signatures Logistic Regression
Pengcheng Zeng, Siyuan Jiang
https://arxiv.org/abs/2507.06637 https://
This https://arxiv.org/abs/2506.03100 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csLG_…
Fine-Grained control over Music Generation with Activation Steering
Dipanshu Panda, Jayden Koshy Joe, Harshith M R, Swathi Narashiman, Pranay Mathur, Anish Veerakumar, Aniruddh Krishna, Keerthiharan A
https://arxiv.org/abs/2506.10225
GP-Recipe: Gaussian Process approximation to linear operations in numerical methods
Christopher DeGrendele, Dongwook Lee
https://arxiv.org/abs/2506.03471 h…
Forward Variable Selection in Ultra-High Dimensional Linear Regression Using Gram-Schmidt Orthogonalization
Jialuo Chen, Zhaoxing Gao, Ruey S. Tsay
https://arxiv.org/abs/2507.04668
Evidence for an intrinsic luminosity-decay correlation in GRB radio afterglows
S. P. R. Shilling, S. R. Oates, D. A. Kann, J. Patel, J. L. Racusin, B. Cenko, R. Gupta, M. Smith, L. Rhodes, K. R. Hinds, M. Nicholl, A. Breeveld, M. Page, M. De Pasquale, B. Gompertz
https://arxiv.org/abs/2508.07276
Standard LSParameter Estimators Ensure Finite Convergence Time for Linear Regression Equations Under an Interval Excitation Assumption
Romeo Ortega, Jose Guadalupe Romero, Stanislav Aranovskiy, Gang Tao
https://arxiv.org/abs/2506.08211
Replaced article(s) found for econ.EM. https://arxiv.org/list/econ.EM/new
[1/1]:
- Nonparametric Treatment Effect Identification in School Choice
Jiafeng Chen
https://arxiv.org/abs/2112.03872
- Potential weights and implicit causal designs in linear regression
Jiafeng Chen
https://arxiv.org/abs/2407.21119 https://mastoxiv.page/@arXiv_econEM_bot/112885535340833628
- Reinterpreting demand estimation
Jiafeng Chen
https://arxiv.org/abs/2503.23524 https://mastoxiv.page/@arXiv_econEM_bot/114262944644769755
- A step towards the integration of machine learning and classic model-based survey methods
Tomasz \.Z\k{a}d{\l}o, Adam Chwila
https://arxiv.org/abs/2402.07521 https://mastoxiv.page/@arXiv_statME_bot/111924442633277025
- Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forec...
Haojie Liu, Zihan Lin
https://arxiv.org/abs/2507.07469 https://mastoxiv.page/@arXiv_statML_bot/114833708254543213
toXiv_bot_toot
Machine learning-based correlation analysis of decadal cyclone intensity with sea surface temperature: data and tutorial
Jingyang Wu, Rohitash Chandra
https://arxiv.org/abs/2506.09254
A new sparsity promoting residual transform operator for Lasso regression
Yao Xiao, Anne Gelb, Aditya Viswanathan
https://arxiv.org/abs/2506.22689 https://…
GPU-Parallelizable Randomized Sketch-and-Precondition for Linear Regression using Sparse Sign Sketches
Tyler Chen, Pradeep Niroula, Archan Ray, Pragna Subrahmanya, Marco Pistoia, Niraj Kumar
https://arxiv.org/abs/2506.03070
Use multi level models with {parsnip}: http://multilevelmod.tidymodels.org/ #rstats #ML
Serum 25-hydroxyvitamin D concentration is not associated with mental health among Aboriginal and Torres Strait Islander Peoples in Australia: a cross-sectional exploratory study
Belinda Neo (Curtin Medical School, Curtin University, Bentley, Western Australia, Australia), Noel Nannup (The Kids Research Institute Australia, Nedlands, Western Australia, Australia), Dale Tilbrook (Maalinup Aboriginal Gallery, Caversham, Western Australia, Australia), Carol Michie (The Kids Research Insti…
Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forecasting
Haojie Liu, Zihan Lin
https://arxiv.org/abs/2507.07469
Incremental Seeded EM Algorithm for Clusterwise Linear Regression
Ye Chow Kuang, Melanie Ooi
https://arxiv.org/abs/2507.04629 https://
A Regression-Based Share Market Prediction Model for Bangladesh
Syeda Tasnim Fabiha, Rubaiyat Jahan Mumu, Farzana Aktar, B M Mainul Hossain
https://arxiv.org/abs/2507.18643 http…
CLT in high-dimensional Bayesian linear regression with low SNR
Seunghyun Lee, Nabarun Deb, Sumit Mukherjee
https://arxiv.org/abs/2507.23285 https://arxiv.…
This https://arxiv.org/abs/2303.11721 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_eco…
Bayesian Models for Joint Selection of Features and Auto-Regressive Lags: Theory and Applications in Environmental and Financial Forecasting
Alokesh Manna, Sujit K. Ghosh
https://arxiv.org/abs/2508.10055
Training-Free Voice Conversion with Factorized Optimal Transport
Alexander Lobashev, Assel Yermekova, Maria Larchenko
https://arxiv.org/abs/2506.09709 http…
High-dimensional Longitudinal Inference via a De-sparsified Dantzig-Selector
Nathan Huey, Rajarshi Mukherjee
https://arxiv.org/abs/2508.07498 https://arxiv…
Explainability-Driven Feature Engineering for Mid-Term Electricity Load Forecasting in ERCOT's SCENT Region
Abhiram Bhupatiraju, Sung Bum Ahn
https://arxiv.org/abs/2507.22220
Heavy Lasso: sparse penalized regression under heavy-tailed noise via data-augmented soft-thresholding
The Tien Mai
https://arxiv.org/abs/2506.07790 https:…
CPC-CMS: Cognitive Pairwise Comparison Classification Model Selection Framework for Document-level Sentiment Analysis
Jianfei Li, Kevin Kam Fung Yuen
https://arxiv.org/abs/2507.14022
Replaced article(s) found for q-fin.MF. https://arxiv.org/list/q-fin.MF/new
[1/1]:
- An analysis of linear regression and neural networks approximation for the pricing of swing options
Christian Yeo
Identifiability in Unlinked Linear Regression: Some Results and Open Problems
Fadoua Balabdaoui, Martin Slawski, Jonathan Steffani
https://arxiv.org/abs/2507.14986
Comparing Building Thermal Dynamics Models and Estimation Methods for Grid-Edge Applications
Ninad Gaikwad, Kunal Shankar, Anamika Dubey, Alan Love, Olvar Bergland
https://arxiv.org/abs/2508.09118
Semi-supervised learning for linear extremile regression
Rong Jiang, Keming Yu, Jiangfeng Wang
https://arxiv.org/abs/2507.01314 https://
Does Trump's Tariff Make America Great Again? An Empirical Analysis of US-China Trade War Impact on American Business Formation (2018-2025)
Ruiming Min
https://arxiv.org/abs/2506.00999
QUTCC: Quantile Uncertainty Training and Conformal Calibration for Imaging Inverse Problems
Cassandra Tong Ye, Shamus Li, Tyler King, Kristina Monakhova
https://arxiv.org/abs/2507.14760
Maximum-likelihood reprojections for reliable Koopman-based predictions and bifurcation analysis of parametric dynamical systems
Pieter van Goor, Robert Mahony, Manuel Schaller, Karl Worthmann
https://arxiv.org/abs/2506.17817
Predicting Formula 1 Race Outcomes: Decomposing the Roles of Drivers and Constructors through Linear Modeling
Saurabh Rane
https://arxiv.org/abs/2508.00200 https://
Optimal Exact Designs of Multiresponse Experiments under Linear and Sparsity Constraints
Lenka Filov\'a, P\'al Somogyi, Radoslav Harman
https://arxiv.org/abs/2507.04713
Analysis of Photonic Circuit Losses with Machine Learning Techniques
Adrian Nugraha Utama, Simon Chun Kiat Goh, Li Hongyu, Wang Xiangyu, Zhou Yanyan, Victor Leong, Manas Mukherjee
https://arxiv.org/abs/2506.17999
Adaptive Market Intelligence: A Mixture of Experts Framework for Volatility-Sensitive Stock Forecasting
Diego Vallarino
https://arxiv.org/abs/2508.02686 https://
Covariance scanning for adaptively optimal change point detection in high-dimensional linear models
Haeran Cho, Housen Li
https://arxiv.org/abs/2507.02552 …
Empirical Models of the Time Evolution of SPX Option Prices
Alessio Brini, David A. Hsieh, Patrick Kuiper, Sean Moushegian, David Ye
https://arxiv.org/abs/2506.17511
Generative Flexible Latent Structure Regression (GFLSR) model
Clara Grazian, Qian Jin, Pierre Lafaye De Micheaux
https://arxiv.org/abs/2508.04393 https://a…
Wild Bootstrap Inference for Linear Regressions with Many Covariates
Wenze Li
https://arxiv.org/abs/2506.20972 https://arxiv.org/pdf/…
Proof of The TAP Free Energy for High-Dimensional Linear Regression with Spherical Priors at All Temperatures
Zhiyuan Yu, Jingbo Liu
https://arxiv.org/abs/2506.20768
Guidelines for LASSO and derivatives use under different dependence and scale structures
Laura Freijeiro-Gonz\'alez, Manuel Febrero-Bande, Wenceslao Gonz\'alez-Manteiga
https://arxiv.org/abs/2506.08582
Derivation of Tissue Properties from Basis-Vector Model Weights for Dual-Energy CT-Based Monte Carlo Proton Beam Dose Calculations
Maria Jose Medrano, Xinyuan Chen, Lucas Norberto Burigo, Joseph A. O'Sullivan, Jeffrey F. Williamson
https://arxiv.org/abs/2506.22425
A powerful transformation of quantitative responses for biobank-scale association studies
Yaowu Liu, Tianying Wang
https://arxiv.org/abs/2507.06496 https:/…
Online design of experiments by active learning for nonlinear system identification
Kui Xie, Alberto Bemporad
https://arxiv.org/abs/2506.21754 https://
Revisiting Randomization in Greedy Model Search
Xin Chen, Jason M. Klusowski, Yan Shuo Tan, Chang Yu
https://arxiv.org/abs/2506.15643 https://
General measures of effect size to calculate power and sample size for Wald tests with generalized linear models
Amy L Cochran, Shijie Yuan, Paul J Rathouz
https://arxiv.org/abs/2506.22324
Bayesian Variable Selection in Multivariate Regression Under Collinearity in the Design Matrix
Joyee Ghosh, Xun Li
https://arxiv.org/abs/2507.17975 https://
Change point detection in ERA5 ground temperature time series
Fatemeh Aghaei A., Ewan T. Phillips, Holger Kantz
https://arxiv.org/abs/2507.15045 https://…
Stochastic Taylor expansion via Poisson point processes
Weichao Wu, Athanasios C. Micheas
https://arxiv.org/abs/2508.04703 https://arxiv.org/pdf/2508.04703…
A High-Dimensional Statistical Theory for Convex and Nonconvex Matrix Sensing
Joshua Agterberg, Ren\'e Vidal
https://arxiv.org/abs/2506.20659 https://
Regression approaches for modelling genotype-environment interaction and making predictions into unseen environments
Maksym Hrachov, Hans-Peter Piepho, Niaz Md. Farhat Rahman, Waqas Ahmed Malik
https://arxiv.org/abs/2507.18125
Sensitivity of weighted least squares estimators to omitted variables
Leonard Wainstein, Chad Hazlett
https://arxiv.org/abs/2508.02954 https://arxiv.org/pd…
Replaced article(s) found for math.ST. https://arxiv.org/list/math.ST/new
[1/1]:
- An extended latent factor framework for ill-posed linear regression
Gianluca Finocchio, Tatyana Krivobokova
A direct approach to tree-guided feature aggregation for high-dimensional regression
Jinwen Fu, Aaron J. Molstad, Hui Zou
https://arxiv.org/abs/2507.19650 https://
TRUST: Transparent, Robust and Ultra-Sparse Trees
Albert Dorador
https://arxiv.org/abs/2506.15791 https://arxiv.org/pdf/2506.15791