2025-11-14 09:35:50
dHPR: A Distributed Halpern Peaceman--Rachford Method for Non-smooth Distributed Optimization Problems
Zhangcheng Feng, Defeng Sun, Yancheng Yuan, Guojun Zhang
https://arxiv.org/abs/2511.10069 https://arxiv.org/pdf/2511.10069 https://arxiv.org/html/2511.10069
arXiv:2511.10069v1 Announce Type: new
Abstract: This paper introduces the distributed Halpern Peaceman--Rachford (dHPR) method, an efficient algorithm for solving distributed convex composite optimization problems with non-smooth objectives, which achieves a non-ergodic $O(1/k)$ iteration complexity regarding Karush--Kuhn--Tucker residual. By leveraging the symmetric Gauss--Seidel decomposition, the dHPR effectively decouples the linear operators in the objective functions and consensus constraints while maintaining parallelizability and avoiding additional large proximal terms, leading to a decentralized implementation with provably fast convergence. The superior performance of dHPR is demonstrated through comprehensive numerical experiments on distributed LASSO, group LASSO, and $L_1$-regularized logistic regression problems.
toXiv_bot_toot