
2025-06-10 16:14:49
This https://arxiv.org/abs/2405.03437 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csCE_…
This https://arxiv.org/abs/2405.03437 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csCE_…
This https://arxiv.org/abs/2506.05678 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csLG_…
Calibration of Quantum Devices via Robust Statistical Methods
Alexandra Ram\^oa, Raffaele Santagati, Nathan Wiebe
https://arxiv.org/abs/2507.06941 https://…
This https://arxiv.org/abs/2005.11205 has been replaced.
link: https://scholar.google.com/scholar?q=a
Imposing the Fundamental Dynamical Constraint of Hydrostatic Balance to Improve Global ML Weather Prediction
Akshay Subramaniam, Dale Durran, David Pruitt, Nathaniel Cresswell-Clay, William Yik
https://arxiv.org/abs/2506.08285
Physics-Informed Gaussian Process Inference of Liquid Structure from Scattering Data
Harry W. Sullivan, Brennon L. Shanks, Matej Cervenka, Michael P. Hoepfner
https://arxiv.org/abs/2507.07948
Determining $\alpha_s(m_Z)$ from the Heavy Jet Mass distribution
Miguel A. Benitez
https://arxiv.org/abs/2506.07723 https://arxiv.org…
Ideal incompressible axisymmetric MHD: Uncovering finite-time singularities
Venkata Sai Swetha Kolluru, Rahul Pandit
https://arxiv.org/abs/2507.06842 https…
Numerical and data-driven modeling of spall failure in polycrystalline ductile materials
Indrashish Saha, Lori Graham-Brady
https://arxiv.org/abs/2507.03706
Global Solutions to the Discrete Nonlinear Breakage Equations without Mass Transfer
Mashkoor Ali (LAMA), Philippe Lauren\c{c}ot (LAMA)
https://arxiv.org/abs/2507.06685
Bilinear Quadratic Output Systems and Balanced Truncation
Heike Fa{\ss}bender (Institute for Numerical Analysis, TU Braunschweig), Serkan Gugercin (Department of Mathematics and Division of Computational Modeling and Data Analytics, Academy of Data Science, Virginia Tech), Till Peters (Institute for Numerical Analysis, TU Braunschweig)
https://
Prospective Learning in Retrospect
Yuxin Bai, Cecelia Shuai, Ashwin De Silva, Siyu Yu, Pratik Chaudhari, Joshua T. Vogelstein
https://arxiv.org/abs/2507.07965 https://arxiv.org/pdf/2507.07965 https://arxiv.org/html/2507.07965
arXiv:2507.07965v1 Announce Type: new
Abstract: In most real-world applications of artificial intelligence, the distributions of the data and the goals of the learners tend to change over time. The Probably Approximately Correct (PAC) learning framework, which underpins most machine learning algorithms, fails to account for dynamic data distributions and evolving objectives, often resulting in suboptimal performance. Prospective learning is a recently introduced mathematical framework that overcomes some of these limitations. We build on this framework to present preliminary results that improve the algorithm and numerical results, and extend prospective learning to sequential decision-making scenarios, specifically foraging. Code is available at: https://github.com/neurodata/prolearn2.
toXiv_bot_toot
Data-driven ANN model for estimating unfrozen water content in the thermo-hydraulic simulation of frozen soils
Mingpeng Liu, Peizhi Zhuang, Raul Fuentes
https://arxiv.org/abs/2508.01902
This is the first numerical problem I ever did. It demonstrates the
power of computers:
Enter lots of data on calorie & nutritive content of foods. Instruct
the thing to maximize a function describing nutritive content, with a
minimum level of each component, for fixed caloric content. The
results are that one should eat each day:
1/2 chicken
1 egg
1 glass of skim milk
27 heads of lettuce.
-- Rev. Adrian Melott
Resonant leptogenesis in inverse see-saw framework with modular $S_4$ symmetry
Abhishek, V. Suryanarayana Mummidi
https://arxiv.org/abs/2507.06610 https://…
Efficiency of turbulence
A Lopez (SPEC - UMR3680), A Barral (SPEC - UMR3680), G Costa (SPEC - UMR3680), Q Pikeroen (SPEC - UMR3680), V Shukla (SPEC - UMR3680), B\'ereng\`ere Dubrulle (SPEC - UMR3680)
https://arxiv.org/abs/2508.05686
Efficient Conformance Checking of Rich Data-Aware Declare Specifications (Extended)
Jacobo Casas-Ramos, Sarah Winkler, Alessandro Gianola, Marco Montali, Manuel Mucientes, Manuel Lama
https://arxiv.org/abs/2507.00094
Task-Based Programming for Adaptive Mesh Refinement in Compressible Flow Simulations
Anjiang Wei, Hang Song, Mert Hidayetoglu, Elliott Slaughter, Sanjiva K. Lele, Alex Aiken
https://arxiv.org/abs/2508.05020
Drag modelling for flows through assemblies of spherical particles with machine learning: A comparison of approaches
Julia Reuter, Hani Elmestikawy, Sanaz Mostaghim, Berend van Wachem
https://arxiv.org/abs/2507.05983
Case Studies of Generative Machine Learning Models for Dynamical Systems
Nachiket U. Bapat, Randy C. Paffenroth, Raghvendra V. Cowlagi
https://arxiv.org/abs/2508.04459 https://
This https://arxiv.org/abs/2505.23667 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csAI_…
A multi-stage Bayesian approach to fit spatial point process models
Rachael Ren, Mevin B. Hooten, Toryn L. J. Schafer, Nicholas M. Calzada, Benjamin Hoose, Jamie N. Womble, Scott Gende
https://arxiv.org/abs/2508.02922
A Non-leveled and Reliable Approximate FHE Framework through Binarized Polynomial Rings
Baigang Chen, Dongfang Zhao
https://arxiv.org/abs/2508.02943 https://
Table-r1: Self-supervised and Reinforcement Learning for Program-based Table Reasoning in Small Language Models
Rihui Jin, Zheyu Xin, Xing Xie, Zuoyi Li, Guilin Qi, Yongrui Chen, Xinbang Dai, Tongtong Wu, Gholamreza Haffari
https://arxiv.org/abs/2506.06137
XPPLORE: Import, visualize, and analyze XPPAUT data in MATLAB
Matteo Martin, Anna Kishida Thomas, George Bard Ermentrout
https://arxiv.org/abs/2507.02709 h…
The Fourier Spectral Transformer Networks For Efficient and Generalizable Nonlinear PDEs Prediction
Beibei Li
https://arxiv.org/abs/2507.05584 https://
Reasoning-Table: Exploring Reinforcement Learning for Table Reasoning
Fangyu Lei, Jinxiang Meng, Yiming Huang, Tinghong Chen, Yun Zhang, Shizhu He, Jun Zhao, Kang Liu
https://arxiv.org/abs/2506.01710
GP-Recipe: Gaussian Process approximation to linear operations in numerical methods
Christopher DeGrendele, Dongwook Lee
https://arxiv.org/abs/2506.03471 h…
Numerical Errors in Quantitative System Analysis With Decision Diagrams
Sebastiaan Brand, Arend-Jan Quist, Richard M. K. van Dijk, Alfons Laarman
https://arxiv.org/abs/2508.02673
Analytic Regression of Feynman Integrals from High-Precision Numerical Sampling
Oscar Barrera, Aur\'elien Dersy, Rabia Husain, Matthew D. Schwartz, Xiaoyuan Zhang
https://arxiv.org/abs/2507.17815
Explaining the "too massive" high-redshift galaxies in JWST data: numerical study of three effects and a simple relation
Joshua J. Ziegler, Katherine Freese, Jonathan Lozano, Gabriele Montefalcone
https://arxiv.org/abs/2507.21409
Dynamic film thickness measurement in a rolling bearing using numerical elastohydrodynamic-acoustic modelling to interpret reflected ultrasound data
Pan Dou, Yayu Li, Suhaib Ardah, Tonghai Wu, Min Yu, Tom Reddyhoff, Yaguo Lei, Daniele Dini
https://arxiv.org/abs/2506.22618
Jacobi-accelerated FFT-based solver for smooth high-contrast data
Martin Ladeck\'y, Ivana Pultarov\'a, Fran\c{c}ois Bignonnet, Indre J\"odicke, Jan Zeman, Lars Pastewka
https://arxiv.org/abs/2508.02613
Multilevel Stochastic Gradient Descent for Optimal Control Under Uncertainty
Niklas Baumgarten, David Schneiderhan
https://arxiv.org/abs/2506.02647 https:/…
Pitfalls and Limits in Automatic Dementia Assessment
Franziska Braun, Christopher Witzl, Andreas Erzigkeit, Hartmut Lehfeld, Thomas Hillemacher, Tobias Bocklet, Korbinian Riedhammer
https://arxiv.org/abs/2508.04512
Neural Drift Estimation for Ergodic Diffusions: Non-parametric Analysis and Numerical Exploration
Simone Di Gregorio, Francesco Iafrate
https://arxiv.org/abs/2505.24383
Towards Explainable Sequential Learning
Giacomo Bergami, Emma Packer, Kirsty Scott, Silvia Del Din
https://arxiv.org/abs/2505.23624 https://
Multimodal Behavioral Patterns Analysis with Eye-Tracking and LLM-Based Reasoning
Dongyang Guo, Yasmeen Abdrabou, Enkeleda Thaqi, Enkelejda Kasneci
https://arxiv.org/abs/2507.18252
MountainLion: A Multi-Modal LLM-Based Agent System for Interpretable and Adaptive Financial Trading
Siyi Wu, Zhaoyang Guan, Leyi Zhao, Xinyuan Song, Xinyu Ying, Hanlin Zhang, Michele Pak, Yangfan He, Yi Xin, Jianhui Wang, Tianyu Shi
https://arxiv.org/abs/2507.20474
ByteGen: A Tokenizer-Free Generative Model for Orderbook Events in Byte Space
Yang Li, Zhi Chen
https://arxiv.org/abs/2508.02247 https://arxiv.org/pdf/2508…
Finite-time gradient blow-up and shock formation in Israel-Stewart theory: Bulk, shear, and diffusion regimes
F\'abio S. Bemfica
https://arxiv.org/abs/2508.04717 https://
Analysis of A Mixed Finite Element Method for Poisson's Equation with Rough Boundary Data
Huadong Gao, Yuhui Huang, Wen Xie
https://arxiv.org/abs/2507.00697
A Closed-Form Approach to Oscillatory Integrals in Level-Crossing Physics
Maseim B. Kenmoe, Anicet D. Kammogne
https://arxiv.org/abs/2506.23385 https://
This https://arxiv.org/abs/2502.16356 has been replaced.
initial toot: https://mastoxiv.page/@ar…
This https://arxiv.org/abs/2504.04375 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csCE_…
SIP-IFVM: An observation-based magnetohydrodynamic model of coronal mass ejection
Haopeng Wang, Jinhan Guo, Stefaan Poedts, Andrea Lani, Luis Linan, Tinatin Baratashvili, Liping Yang, Hyun-Jin Jeong, Wenwen Wei, Caixia Li, Yun Yang, Yucong Li, Hao Wu, Yang Guo, Brigitte Schmieder
https://arxiv.org/abs/2506.19711
QC-OT: Optimal Transport with Quasiconformal Mapping
Yuping Lv, Qi Zhao, Xuebin Chang, Wei Zeng
https://arxiv.org/abs/2507.01456 https://
DATA-DRIVEN PRONTO: a Model-free Solution for Numerical Optimal Control
Marco Borghesi, Lorenzo Sforni, Giuseppe Notarstefano
https://arxiv.org/abs/2506.15465
Ocean-E2E: Hybrid Physics-Based and Data-Driven Global Forecasting of Extreme Marine Heatwaves with End-to-End Neural Assimilation
Ruiqi Shu, Yuan Gao, Hao Wu, Ruijian Gou, Yanfei Xiang, Fan Xu, Qingsong Wen, Xian Wu, Xiaomeng Huang
https://arxiv.org/abs/2505.22071
Binary black holes in the heat of merger
Samanwaya Mukherjee, Sayak Datta, Sukanta Bose, Khun Sang Phukon
https://arxiv.org/abs/2506.22363 https://
From Interviews to Equations: A Multi-Phase System Dynamics Model of Engineering Student Engagement
Mohammed A. Alrizqi
https://arxiv.org/abs/2507.00382 ht…
Compact representation and long-time extrapolation of real-time data for quantum systems
Andre Erpenbeck, Yuanran Zhu, Yang Yu, Lei Zhang, Richard Gerum, Olga Goulko, Chao Yang, Guy Cohen, Emanuel Gull
https://arxiv.org/abs/2506.13760
This https://arxiv.org/abs/2310.01147 has been replaced.
link: https://scholar.google.com/scholar?q=a
Effects of lower floating-point precision on scale-resolving numerical simulations of turbulence
Martin Karp, Ronith Stanly, Timofey Mukha, Luca Galimberti, Siavash Toosi, Hang Song, Lissandro Dalcin, Saleh Rezaeiravesh, Niclas Jansson, Stefano Markidis, Matteo Parsani, Sanjeeb Bose, Sanjiva Lele, Philipp Schlatter
https://arxiv…
Measuring the Unmeasurable? Systematic Evidence on Scale Transformations in Subjective Survey Data
Caspar Kaiser, Anthony Lepinteur
https://arxiv.org/abs/2507.16440 https://
Radio signatures of AGN-wind-driven shocks in elliptical galaxies: From simulations to observations
Haojie Xia, Feng Yuan, Zhiyuan Li, Bocheng Zhu
https://arxiv.org/abs/2507.19716
Numerical analysis of quasiperiodic oscillations in the Hartle-Thorne spacetime
K. Boshkayev, T. Konysbayev, Ye. Kurmanov, M. Muccino, H. Quevedo
https://arxiv.org/abs/2506.11581 …
Deep Learning Weather Models for Subregional Ocean Forecasting: A Case Study on the Canary Current Upwelling System
Giovanny C-Londo\~no, Javier S\'anchez, \'Angel Rodr\'iguez-Santana
https://arxiv.org/abs/2505.24429
Multi-Machine Scaling Laws for Fuel and Impurity Puffing Rates Sufficient for Detachment Access: a Systematic Review of Magnetic Confinement Fusion Devices
M. Moscheni, A. Herrmann, R. Kembleton, M. Kryjak, S. Lazerson, F. Levi, M. Siccinio, P. Staniec, T. Giegerich, C. Tantos, the Gauss Fusion GmbH Team
https://arxiv.org/abs/2507.20523
Mechanical enhancement of quantum oscillations
Maximilian Daschner, Ivan Kokanovi\'c, F. Malte Grosche
https://arxiv.org/abs/2507.02612 https://…
This https://arxiv.org/abs/2407.11746 has been replaced.
initial toot: https://mastoxiv.page/@ar…
Narrate2Nav: Real-Time Visual Navigation with Implicit Language Reasoning in Human-Centric Environments
Amirreza Payandeh, Anuj Pokhrel, Daeun Song, Marcos Zampieri, Xuesu Xiao
https://arxiv.org/abs/2506.14233
This https://arxiv.org/abs/2112.09041 has been replaced.
link: https://scholar.google.com/scholar?q=a
This https://arxiv.org/abs/2409.03686 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_mat…
Integral fractional viscoelastic models in SPH: LAOS simulations versus experimental data
Luca Santelli, Adolfo V\'azquez-Quesada, Aizzati Burgoa, Aitor Arriaga, Ritardo Hernandez, Marco Ellero
https://arxiv.org/abs/2507.14149
PICore: Physics-Informed Unsupervised Coreset Selection for Data Efficient Neural Operator Training
Anirudh Satheesh, Anant Khandelwal, Mucong Ding, Radu Balan
https://arxiv.org/abs/2507.17151
Data-Driven Self-Supervised Learning for the Discovery of Solution Singularity for Partial Differential Equations
Difeng Cai, Paulina Sep\'ulveda
https://arxiv.org/abs/2506.23344
Study of $\tau\rightarrow e M^ M^-$ decays in the N-B-LSSM
Rong-Zhi Sun, Shu-Min Zhao, Shuang Di, Xing-Xing Dong
https://arxiv.org/abs/2507.01276 https://…
Tails from the Bulk: Gravitational Decay in AdS$_5$
John R. V. Crump, Jorge E. Santos
https://arxiv.org/abs/2506.18991 https://arxiv.…
HPC-AI Coupling Methodology for Scientific Applications
Yutong Lu, Dan Huang, Pin Chen
https://arxiv.org/abs/2507.01025 https://arxiv…
Convex computation of regions of attraction from data using Sums-of-Squares programming
Oumayma Khattabi, Matteo Tacchi-B\'enard, Sorin Olaru
https://arxiv.org/abs/2507.14073 …
A Data-Driven Approach for Predicting Hydrodynamic Forces on Spherical Particles Using Volume Fraction Representations
Alexander Metelkin, Sam Jacob Jacob, Bernhard Vowinckel
https://arxiv.org/abs/2507.20767
Computing and compressing local vertex functions in imaginary and real frequencies from the multipoint numerical renormalization group using quantics tensor cross interpolation
Markus Frankenbach, Marc Ritter, Mathias Pelz, Nepomuk Ritz, Jan von Delft, Anxiang Ge
https://arxiv.org/abs/2506.13359
Numerical evaluation of deliberative discussions of the UK food system: stimuli, demographics, and opinion reversion
John Buckell, Thomas Hancock
https://arxiv.org/abs/2506.14102 …
Summary Statistics of Large-scale Model Outputs for Observation-corrected Outputs
Atlanta Chakraborty, Julie Bessac
https://arxiv.org/abs/2506.15845 https:…
Replaced article(s) found for math.NA. https://arxiv.org/list/math.NA/new
[1/1]:
- A Model-Consistent Data-Driven Computational Strategy for PDE Joint Inversion Problems
Kui Ren, Lu Zhang
Numerical Modeling of n-Hexane Pyrolysis with an Optimized Kinetic Mechanism in a Hydrogen Plasma Reactor
Subin Choi, Chanmi Jung, Dae Hoon Lee, Jeongan Choi, Jaekwang Kim
https://arxiv.org/abs/2506.13789
Identifying Solution Constraints for ODE Systems
Nicolae Tarfulea
https://arxiv.org/abs/2507.15805 https://arxiv.org/pdf/2507.15805…
A comparison of stretched-grid and limited-area modelling for data-driven regional weather forecasting
Jasper S. Wijnands, Michiel Van Ginderachter, Bastien Fran\c{c}ois, Sophie Buurman, Piet Termonia, Dieter Van den Bleeken
https://arxiv.org/abs/2507.18378
Physics-Informed Neural Networks with Dynamical Boundary Constraints
Andr\'es Mart\'inez-Esteban, Pablo Calvo-Barl\'es, Luis Mart\'in-Moreno, Sergio G Rodrigo
https://arxiv.org/abs/2507.21800
Bridging Equilibrium and Kinetics Prediction with a Data-Weighted Neural Network Model of Methane Steam Reforming
Zofia Pizo\'n, Shinji Kimijima, Grzegorz Brus
https://arxiv.org/abs/2506.17224
Numerical analysis of scattered point measurement-based regularization for backward problems for fractional wave equations
Dakang Cen, Zhiyuan Li, Wenlong Zhang
https://arxiv.org/abs/2506.18948
Numerical Artifacts in Learning Dynamical Systems
Bing-Ze Lu, Richard Tsai
https://arxiv.org/abs/2507.14491 https://arxiv.org/pdf/250…
Three-dimensional numerical study on hydrogen bubble growth at electrode
Wei Qin, Tian Long, Jacob Maarek, St\'ephane Zaleski
https://arxiv.org/abs/2507.15582 https://
Exponential Runge-Kutta Galerkin finite element method for a reaction-diffusion system with nonsmooth initial data
Runjie Zhang, Jinwei Fang, Shuo Yang
https://arxiv.org/abs/2507.15345
mLaSDI: Multi-stage latent space dynamics identification
William Anderson, Kevin Chung, Youngsoo Choi
https://arxiv.org/abs/2506.09207 https://
Higher-order transmissibility and its linear approximation for in-service crack identification in train wheelset axles
Ehsan Naghizadeh, Paolo Tiso, Eleni Chatzi
https://arxiv.org/abs/2507.18636
This https://arxiv.org/abs/2408.08129 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_mat…
An integrated theoretical, experimental, and numerical study of small-amplitude water waves
Lennon \'O N\'araigh, Nicolas Farault, Nicola Young
https://arxiv.org/abs/2507.18403
Numerical approximation of a PDE-constrained Optimization problem that appears in Data-Driven Computational Mechanics
Pedro B. Bazon, Cristian G. Gebhardt, Gustavo C. Buscaglia, Roberto F. Ausas
https://arxiv.org/abs/2506.10894
Dynamics of a data-driven low-dimensional model of Rayleigh-Benard convection
Qiwei Chen, Andres Castillo-Castellanos, C. Ricardo Constante-Amores
https://arxiv.org/abs/2507.11858
Neural-operator element method: Efficient and scalable finite element method enabled by reusable neural operators
Weihang Ouyang, Yeonjong Shin, Si-Wei Liu, Lu Lu
https://arxiv.org/abs/2506.18427
Is memory all you need? Data-driven Mori-Zwanzig modeling of Lagrangian particle dynamics in turbulent flows
Xander de Wit, Alessandro Gabbana, Michael Woodward, Yen Ting Lin, Federico Toschi, Daniel Livescu
https://arxiv.org/abs/2507.16058
Towards Real-time Structural Dynamics Simulation with Graph-based Digital Twin Modelling
Jun Zhang, Tong Zhang, Ying Wang
https://arxiv.org/abs/2506.18724 …
TURB-Smoke. A database of Lagrangian pollutants emitted from point-sources and dispersed in turbulent flows
Luca Biferale, Fabio Bonaccorso, Niccol\`o Cocciaglia, Robin A. Heinonen, Lorenzo Piro
https://arxiv.org/abs/2507.22749
An Introduction to Solving the Least-Squares Problem in Variational Data Assimilation
I. Dau\v{z}ickait\.e, M. A. Freitag, S. G\"urol, A. S. Lawless, A. Ramage, J. A. Scott, J. M. Tabeart
https://arxiv.org/abs/2506.09211
State-based approach to the numerical solution of Dirichlet boundary optimal control problems for the Laplace equation
Ulrich Langer, Richard L\"oscher, Olaf Steinbach, Huidong Yang
https://arxiv.org/abs/2507.11646
Robust PDE discovery under sparse and highly noisy conditions via attention neural networks
Shilin Zhang, Yunqing Huang, Nianyu Yi, shihan Zhang
https://arxiv.org/abs/2506.17908
Replaced article(s) found for math.NA. https://arxiv.org/list/math.NA/new
[1/1]:
- Detecting null patterns in tensor data
Peter A. Brooksbank, Martin D. Kassabov, James B. Wilson