Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_csSD_bot@mastoxiv.page
2025-09-26 09:07:11

SupCLAP: Controlling Optimization Trajectory Drift in Audio-Text Contrastive Learning with Support Vector Regularization
Jiehui Luo, Yuguo Yin, Yuxin Xie, Jinghan Ru, Xianwei Zhuang, Minghua He, Aofan Liu, Zihan Xiong, Dongchao Yang
arxiv.org/abs/2509.21033

@arXiv_csLG_bot@mastoxiv.page
2025-09-26 14:31:59

Replaced article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[2/8]:
- Regularization can make diffusion models more efficient
Mahsa Taheri, Johannes Lederer

@arXiv_csCV_bot@mastoxiv.page
2025-09-26 10:23:01

Learning to Look: Cognitive Attention Alignment with Vision-Language Models
Ryan L. Yang, Dipkamal Bhusal, Nidhi Rastogi
arxiv.org/abs/2509.21247

@arXiv_eessIV_bot@mastoxiv.page
2025-09-26 08:55:11

Optimal Transport Based Hyperspectral Unmixing for Highly Mixed Observations
D. Doutsas, B. Figliuzzi
arxiv.org/abs/2509.20417 arxiv.org/pd…

@arXiv_mathPR_bot@mastoxiv.page
2025-09-26 08:53:31

Relaxation to equilibrium of conservative dynamics II: non-gradient exclusion processes
Chenlin Gu, Linzhi Yang
arxiv.org/abs/2509.20797 ar…

@arXiv_statML_bot@mastoxiv.page
2025-10-15 09:41:12

Simplifying Optimal Transport through Schatten-$p$ Regularization
Tyler Maunu
arxiv.org/abs/2510.11910 arxiv.org/pdf/2510.11910

@arXiv_mathNA_bot@mastoxiv.page
2025-10-15 09:55:11

Why the noise model matters: A performance gap in learned regularization
Sebastian Banert, Christoph Brauer, Dirk Lorenz, Lionel Tondji
arxiv.org/abs/2510.12521

@arXiv_hepth_bot@mastoxiv.page
2025-10-03 07:58:31

Generalized Mandelstam-Leibbrandt regularization
Jorge Alfaro
arxiv.org/abs/2510.01200 arxiv.org/pdf/2510.01200

@arXiv_mathOC_bot@mastoxiv.page
2025-10-07 09:35:32

Optimal Regularization Under Uncertainty: Distributional Robustness and Convexity Constraints
Oscar Leong, Eliza O'Reilly, Yong Sheng Soh
arxiv.org/abs/2510.03464

@arXiv_csIT_bot@mastoxiv.page
2025-10-15 07:35:11

Approximate Proximal Operators for Analog Compressed Sensing Using PN-junction Diode
Soma Furusawa, Taisei Kato, Ryo Hayakawa, Kazunori Hayashi
arxiv.org/abs/2510.12065

@arXiv_csRO_bot@mastoxiv.page
2025-10-10 09:45:29

DM1: MeanFlow with Dispersive Regularization for 1-Step Robotic Manipulation
Guowei Zou, Haitao Wang, Hejun Wu, Yukun Qian, Yuhang Wang, Weibing Li
arxiv.org/abs/2510.07865

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:33:00

Mitigating Forgetting in Low Rank Adaptation
Joanna Sliwa, Frank Schneider, Philipp Hennig, Jose Miguel Hernandez-Lobato
arxiv.org/abs/2512.17720 arxiv.org/pdf/2512.17720 arxiv.org/html/2512.17720
arXiv:2512.17720v1 Announce Type: new
Abstract: Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), enable fast specialization of large pre-trained models to different downstream applications. However, this process often leads to catastrophic forgetting of the model's prior domain knowledge. We address this issue with LaLoRA, a weight-space regularization technique that applies a Laplace approximation to Low-Rank Adaptation. Our approach estimates the model's confidence in each parameter and constrains updates in high-curvature directions, preserving prior knowledge while enabling efficient target-domain learning. By applying the Laplace approximation only to the LoRA weights, the method remains lightweight. We evaluate LaLoRA by fine-tuning a Llama model for mathematical reasoning and demonstrate an improved learning-forgetting trade-off, which can be directly controlled via the method's regularization strength. We further explore different loss landscape curvature approximations for estimating parameter confidence, analyze the effect of the data used for the Laplace approximation, and study robustness across hyperparameters.
toXiv_bot_toot

@arXiv_statME_bot@mastoxiv.page
2025-10-07 10:16:12

Beyond Regularization: Inherently Sparse Principal Component Analysis
Jan O. Bauer
arxiv.org/abs/2510.03729 arxiv.org/pdf/2510.03729

@arXiv_csCV_bot@mastoxiv.page
2025-10-15 10:51:01

E-MoFlow: Learning Egomotion and Optical Flow from Event Data via Implicit Regularization
Wenpu Li, Bangyan Liao, Yi Zhou, Qi Xu, Pian Wan, Peidong Liu
arxiv.org/abs/2510.12753

@arXiv_hepph_bot@mastoxiv.page
2025-10-10 10:10:29

Exploring rapidity regularization schemes at low $x$ with the DIS longitudinal structure function
Tolga Altinoluk, Guillaume Beuf, Jani Penttala
arxiv.org/abs/2510.08550

@arXiv_mathNA_bot@mastoxiv.page
2025-10-14 10:52:48

Randomized flexible Krylov methods for $\ell_p$ regularization
Malena Sabat\'e Landman, Yuji Nakatsukasa
arxiv.org/abs/2510.11237 arxiv…

@arXiv_eessSY_bot@mastoxiv.page
2025-09-30 11:54:31

Event-Driven Control via Sparsity-Promoting Regularization: A Rollout Approach with Performance Guarantees
Shumpei Nishida, Kunihisa Okano
arxiv.org/abs/2509.24799

@arXiv_csCL_bot@mastoxiv.page
2025-10-14 16:11:31

Crosslisted article(s) found for cs.CL. arxiv.org/list/cs.CL/new
[2/3]:
- Rediscovering Entropy Regularization: Adaptive Coefficient Unlocks Its Potential for LLM Reinforc...
Xiaoyun Zhang, Xiaojian Yuan, Di Huang, Wang You, Chen Hu, Jingqing Ruan, Kejiang Chen, Xing Hu

@arXiv_csCR_bot@mastoxiv.page
2025-10-15 07:31:51

A Comprehensive Survey of Website Fingerprinting Attacks and Defenses in Tor: Advances and Open Challenges
Yuwen Cui, Guangjing Wang, Khanh Vu, Kai Wei, Kehan Shen, Zhengyuan Jiang, Xiao Han, Ning Wang, Zhuo Lu, Yao Liu
arxiv.org/abs/2510.11804

@arXiv_mathOC_bot@mastoxiv.page
2025-10-13 08:15:40

Re$^3$MCN: Cubic Newton Variance Reduction Momentum Quadratic Regularization for Finite-sum Non-convex Problems
Dmitry Pasechnyuk-Vilensky, Dmitry Kamzolov, Martin Tak\'a\v{c}
arxiv.org/abs/2510.08714

@arXiv_csAI_bot@mastoxiv.page
2025-10-10 13:47:53

Crosslisted article(s) found for cs.AI. arxiv.org/list/cs.AI/new
[4/8]:
- DM1: MeanFlow with Dispersive Regularization for 1-Step Robotic Manipulation
Guowei Zou, Haitao Wang, Hejun Wu, Yukun Qian, Yuhang Wang, Weibing Li

@arXiv_csRO_bot@mastoxiv.page
2025-10-03 10:06:21

Contrastive Representation Regularization for Vision-Language-Action Models
Taeyoung Kim, Jimin Lee, Myungkyu Koo, Dongyoung Kim, Kyungmin Lee, Changyeon Kim, Younggyo Seo, Jinwoo Shin
arxiv.org/abs/2510.01711

@arXiv_statML_bot@mastoxiv.page
2025-10-10 09:26:09

Beyond Real Data: Synthetic Data through the Lens of Regularization
Amitis Shidani, Tyler Farghly, Yang Sun, Habib Ganjgahi, George Deligiannidis
arxiv.org/abs/2510.08095

@arXiv_csCV_bot@mastoxiv.page
2025-10-13 10:28:30

Instance-Aware Robust Consistency Regularization for Semi-Supervised Nuclei Instance Segmentation
Zenan Lin, Wei Li, Jintao Chen, Zihao Wu, Wenxiong Kang, Changxin Gao, Liansheng Wang, Jin-Gang Yu
arxiv.org/abs/2510.09329

@arXiv_csLG_bot@mastoxiv.page
2025-10-13 10:37:20

FM-IRL: Flow-Matching for Reward Modeling and Policy Regularization in Reinforcement Learning
Zhenglin Wan, Jingxuan Wu, Xingrui Yu, Chubin Zhang, Mingcong Lei, Bo An, Ivor Tsang
arxiv.org/abs/2510.09222

@arXiv_eessSP_bot@mastoxiv.page
2025-10-02 09:36:21

Geometric Spatio-Spectral Total Variation for Hyperspectral Image Denoising and Destriping
Shingo Takemoto, Shunsuke Ono
arxiv.org/abs/2510.00562

@arXiv_condmatmtrlsci_bot@mastoxiv.page
2025-10-14 11:59:18

Optimizing Cross-Domain Transfer for Universal Machine Learning Interatomic Potentials
Jaesun Kim, Jinmu You, Yutack Park, Yunsung Lim, Yujin Kang, Jisu Kim, Haekwan Jeon, Deokgi Hong, Seung Yul Lee, Saerom Choi, Yongdeok Kim, Jae W. Lee, Seungwu Han
arxiv.org/abs/2510.11241

@arXiv_econEM_bot@mastoxiv.page
2025-10-14 08:42:58

Macroeconomic Forecasting and Machine Learning
Ta-Chung Chi (Kevin), Ting-Han Fan (Kevin), Raffaele M. Ghigliazza (Kevin), Domenico Giannone (Kevin), Zixuan (Kevin), Wang
arxiv.org/abs/2510.11008

@arXiv_mathOC_bot@mastoxiv.page
2025-10-07 10:41:02

Well-Posedness and Efficient Algorithms for Inverse Optimal Transport with Bregman Regularization
Chenglong Bao, Zanyu Li, Yunan Yang
arxiv.org/abs/2510.03803

@arXiv_csCL_bot@mastoxiv.page
2025-10-13 10:33:30

Token-Level Policy Optimization: Linking Group-Level Rewards to Token-Level Aggregation via Markov Likelihood
Xingyu Lin, Yilin Wen, En Wang, Du Su, Wenbin Liu, Chenfu Bao, Zhonghou Lv
arxiv.org/abs/2510.09369

@arXiv_csCV_bot@mastoxiv.page
2025-10-09 10:05:11

Self-supervised Physics-guided Model with Implicit Representation Regularization for Fast MRI Reconstruction
Jingran Xu, Yuanyuan Liu, Yanjie Zhu
arxiv.org/abs/2510.06611

@arXiv_statML_bot@mastoxiv.page
2025-09-29 09:23:17

A Random Matrix Perspective of Echo State Networks: From Precise Bias--Variance Characterization to Optimal Regularization
Yessin Moakher, Malik Tiomoko, Cosme Louart, Zhenyu Liao
arxiv.org/abs/2509.22011

@arXiv_csLG_bot@mastoxiv.page
2025-09-30 14:43:31

Rethinking Entropy Regularization in Large Reasoning Models
Yuxian Jiang, Yafu Li, Guanxu Chen, Dongrui Liu, Yu Cheng, Jing Shao
arxiv.org/abs/2509.25133

@arXiv_mathph_bot@mastoxiv.page
2025-10-03 09:07:31

Waves, structures, and the Riemann problem for a system of hyperbolic conservation laws
A. P. Chugainova, D. V. Treschev
arxiv.org/abs/2510.02070

@arXiv_csIT_bot@mastoxiv.page
2025-10-15 07:42:01

FedLoDrop: Federated LoRA with Dropout for Generalized LLM Fine-tuning
Sijing Xie, Dingzhu Wen, Changsheng You, Qimei Chen, Mehdi Bennis, Kaibin Huang
arxiv.org/abs/2510.12078

@arXiv_statME_bot@mastoxiv.page
2025-10-01 08:11:57

Calibrated Counterfactual Conformal Fairness ($C^3F$): Post-hoc, Shift-Aware Coverage Parity via Conformal Prediction and Counterfactual Regularization
Faruk Alpay, Taylan Alpay
arxiv.org/abs/2509.25295

@arXiv_csSD_bot@mastoxiv.page
2025-10-14 09:30:58

Improving Speech Emotion Recognition with Mutual Information Regularized Generative Model
Chung-Soo Ahn, Rajib Rana, Sunil Sivadas, Carlos Busso, Jagath C. Rajapakse
arxiv.org/abs/2510.10078

@arXiv_csCV_bot@mastoxiv.page
2025-10-09 10:29:11

Continual Action Quality Assessment via Adaptive Manifold-Aligned Graph Regularization
Kanglei Zhou, Qingyi Pan, Xingxing Zhang, Hubert P. H. Shum, Frederick W. B. Li, Xiaohui Liang, Liyuan Wang
arxiv.org/abs/2510.06842

@arXiv_mathMG_bot@mastoxiv.page
2025-10-07 14:14:53

Crosslisted article(s) found for math.MG. arxiv.org/list/math.MG/new
[1/1]:
- Optimal Regularization Under Uncertainty: Distributional Robustness and Convexity Constraints
Oscar Leong, Eliza O'Reilly, Yong Sheng Soh

@arXiv_csLG_bot@mastoxiv.page
2025-09-30 14:38:31

Overlap-Adaptive Regularization for Conditional Average Treatment Effect Estimation
Valentyn Melnychuk, Dennis Frauen, Jonas Schweisthal, Stefan Feuerriegel
arxiv.org/abs/2509.24962

@arXiv_mathPR_bot@mastoxiv.page
2025-10-15 08:23:02

Lectures on stochastic sewing with applications
Oleg Butkovsky
arxiv.org/abs/2510.12165 arxiv.org/pdf/2510.12165

@arXiv_mathST_bot@mastoxiv.page
2025-10-06 08:09:29

General Divergence Regularized Optimal Transport: Sample Complexity and Central Limit Theorems
Jiaping Yang, Yunxin Zhang
arxiv.org/abs/2510.02489

@arXiv_csNE_bot@mastoxiv.page
2025-09-30 09:03:21

Accuracy-Robustness Trade Off via Spiking Neural Network Gradient Sparsity Trail
Nhan T. Luu
arxiv.org/abs/2509.23762 arxiv.org/pdf/2509.23…

@arXiv_eessIV_bot@mastoxiv.page
2025-10-07 09:30:22

Adaptive double-phase Rudin--Osher--Fatemi denoising model
Wojciech G\'orny, Micha{\l} {\L}asica, Alexandros Matsoukas
arxiv.org/abs/2510.04382

@arXiv_mathAP_bot@mastoxiv.page
2025-09-30 12:03:51

A Source Identification Problem for the Bi-Parabolic Equation Containing a Poly-harmonic Operator
Dang Duc Trong, Bui Thanh Duy, Nguyen Dang Minh
arxiv.org/abs/2509.24470

@arXiv_statML_bot@mastoxiv.page
2025-10-15 10:19:11

Contraction and entropy production in continuous-time Sinkhorn dynamics
Anand Srinivasan, Jean-Jacques Slotine
arxiv.org/abs/2510.12639 arx…

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:34:50

Regularized Random Fourier Features and Finite Element Reconstruction for Operator Learning in Sobolev Space
Xinyue Yu, Hayden Schaeffer
arxiv.org/abs/2512.17884 arxiv.org/pdf/2512.17884 arxiv.org/html/2512.17884
arXiv:2512.17884v1 Announce Type: new
Abstract: Operator learning is a data-driven approximation of mappings between infinite-dimensional function spaces, such as the solution operators of partial differential equations. Kernel-based operator learning can offer accurate, theoretically justified approximations that require less training than standard methods. However, they can become computationally prohibitive for large training sets and can be sensitive to noise. We propose a regularized random Fourier feature (RRFF) approach, coupled with a finite element reconstruction map (RRFF-FEM), for learning operators from noisy data. The method uses random features drawn from multivariate Student's $t$ distributions, together with frequency-weighted Tikhonov regularization that suppresses high-frequency noise. We establish high-probability bounds on the extreme singular values of the associated random feature matrix and show that when the number of features $N$ scales like $m \log m$ with the number of training samples $m$, the system is well-conditioned, which yields estimation and generalization guarantees. Detailed numerical experiments on benchmark PDE problems, including advection, Burgers', Darcy flow, Helmholtz, Navier-Stokes, and structural mechanics, demonstrate that RRFF and RRFF-FEM are robust to noise and achieve improved performance with reduced training time compared to the unregularized random feature model, while maintaining competitive accuracy relative to kernel and neural operator tests.
toXiv_bot_toot

@arXiv_eessSY_bot@mastoxiv.page
2025-10-09 13:35:59

Replaced article(s) found for eess.SY. arxiv.org/list/eess.SY/new
[1/1]:
- Sparse dynamic network reconstruction through L1-regularization of a Lyapunov equation
Belaustegui, Arango, Rossi-Pool, Leonard, Franci

@arXiv_mathOC_bot@mastoxiv.page
2025-10-03 09:29:21

Irrationality as a mean of regularization in Bayesian Persuasion
Romain Duboscq (IMT, INSA Toulouse), Fr\'ed\'eric de Gournay (IMT, INSA Toulouse)
arxiv.org/abs/2510.01759

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:33:50

Calibratable Disambiguation Loss for Multi-Instance Partial-Label Learning
Wei Tang, Yin-Fang Yang, Weijia Zhang, Min-Ling Zhang
arxiv.org/abs/2512.17788 arxiv.org/pdf/2512.17788 arxiv.org/html/2512.17788
arXiv:2512.17788v1 Announce Type: new
Abstract: Multi-instance partial-label learning (MIPL) is a weakly supervised framework that extends the principles of multi-instance learning (MIL) and partial-label learning (PLL) to address the challenges of inexact supervision in both instance and label spaces. However, existing MIPL approaches often suffer from poor calibration, undermining classifier reliability. In this work, we propose a plug-and-play calibratable disambiguation loss (CDL) that simultaneously improves classification accuracy and calibration performance. The loss has two instantiations: the first one calibrates predictions based on probabilities from the candidate label set, while the second one integrates probabilities from both candidate and non-candidate label sets. The proposed CDL can be seamlessly incorporated into existing MIPL and PLL frameworks. We provide a theoretical analysis that establishes the lower bound and regularization properties of CDL, demonstrating its superiority over conventional disambiguation losses. Experimental results on benchmark and real-world datasets confirm that our CDL significantly enhances both classification and calibration performance.
toXiv_bot_toot

@arXiv_mathGM_bot@mastoxiv.page
2025-09-29 08:38:28

Beyond the Euler--Mascheroni Constant: A Family of Functionals
Ken Nagai
arxiv.org/abs/2509.22289 arxiv.org/pdf/2509.22289

@arXiv_csCV_bot@mastoxiv.page
2025-10-03 10:32:21

FRIEREN: Federated Learning with Vision-Language Regularization for Segmentation
Ding-Ruei Shen
arxiv.org/abs/2510.02114 arxiv.org/pdf/2510…

@arXiv_statML_bot@mastoxiv.page
2025-10-14 10:20:58

Efficient Group Lasso Regularized Rank Regression with Data-Driven Parameter Determination
Meixia Lin, Meijiao Shi, Yunhai Xiao, Qian Zhang
arxiv.org/abs/2510.11546

@arXiv_statME_bot@mastoxiv.page
2025-10-07 09:16:12

Bayesian Transfer Learning for High-Dimensional Linear Regression via Adaptive Shrinkage
Parsa Jamshidian, Donatello Telesca
arxiv.org/abs/2510.03449

@arXiv_mathNA_bot@mastoxiv.page
2025-10-08 08:55:59

Data-Driven Filtering of the Spherical Harmonics Method
Benjamin Plumridge, Cory Hauck, Steffen Schotthofer
arxiv.org/abs/2510.05452 arxiv.…

@arXiv_statML_bot@mastoxiv.page
2025-10-13 13:50:05

Replaced article(s) found for stat.ML. arxiv.org/list/stat.ML/new
[1/2]:
- Multiparameter regularization and aggregation in the context of polynomial functional regression
Gizewski, Holzleitner, Mayer-Suess, Pereverzyev, Pereverzyev

@arXiv_mathST_bot@mastoxiv.page
2025-09-30 08:13:46

Generalization Analysis for Classification on Korobov Space
Yuqing Liu
arxiv.org/abs/2509.22748 arxiv.org/pdf/2509.22748

@arXiv_csLG_bot@mastoxiv.page
2025-10-02 11:12:31

Dirichlet-Prior Shaping: Guiding Expert Specialization in Upcycled MoEs
Leyla Mirvakhabova, Babak Ehteshami Bejnordi, Gaurav Kumar, Hanxue Liang, Wanru Zhao, Paul Whatmough
arxiv.org/abs/2510.01185

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:44:20

On fundamental properties of high-order forward-backward envelope
Alireza Kabgani, Masoud Ahookhosh
arxiv.org/abs/2511.10421 arxiv.org/pdf/2511.10421 arxiv.org/html/2511.10421
arXiv:2511.10421v1 Announce Type: new
Abstract: This paper studies the fundamental properties of the high-order forward-backward splitting mapping (HiFBS) and its associated forward-backward envelope (HiFBE) through the lens of high-order regularization for nonconvex composite functions. Specifically, we (i) establish the boundedness and uniform boundedness of HiFBS, along with the H\"older and Lipschitz continuity of HiFBE; (ii) derive an explicit form for the subdifferentials of HiFBE; and (iii) investigate necessary and sufficient conditions for the differentiability and weak smoothness of HiFBE under suitable assumptions. By leveraging the prox-regularity of $g$ and the concept of $p$-calmness, we further demonstrate the local single-valuedness and continuity of HiFBS, which in turn guarantee the differentiability of HiFBE in neighborhoods of calm points. This paves the way for the development of gradient-based algorithms tailored to nonconvex composite optimization problems.
toXiv_bot_toot

@arXiv_mathNA_bot@mastoxiv.page
2025-10-08 08:52:49

A convergent adaptive finite element method for a phase-field model of dynamic fracture
Ram Manohar, S. M. Mallikarjuaniah
arxiv.org/abs/2510.05407

@arXiv_statME_bot@mastoxiv.page
2025-10-06 12:14:38

Replaced article(s) found for stat.ME. arxiv.org/list/stat.ME/new
[1/1]:
- Joint identification of spatially variable genes via a network-assisted Bayesian regularization a...
Mingcong Wu, Yang Li, Shuangge Ma, Mengyun Wu

@arXiv_eessSY_bot@mastoxiv.page
2025-09-30 12:01:11

Spectral Flow Learning Theory: Finite-Sample Guarantees for Vector-Field Identification
Chi Ho Leung, Philip E. Par\'e
arxiv.org/abs/2509.25000

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:19:00

Global Convergence of Four-Layer Matrix Factorization under Random Initialization
Minrui Luo, Weihang Xu, Xiang Gao, Maryam Fazel, Simon Shaolei Du
arxiv.org/abs/2511.09925 arxiv.org/pdf/2511.09925 arxiv.org/html/2511.09925
arXiv:2511.09925v1 Announce Type: new
Abstract: Gradient descent dynamics on the deep matrix factorization problem is extensively studied as a simplified theoretical model for deep neural networks. Although the convergence theory for two-layer matrix factorization is well-established, no global convergence guarantee for general deep matrix factorization under random initialization has been established to date. To address this gap, we provide a polynomial-time global convergence guarantee for randomly initialized gradient descent on four-layer matrix factorization, given certain conditions on the target matrix and a standard balanced regularization term. Our analysis employs new techniques to show saddle-avoidance properties of gradient decent dynamics, and extends previous theories to characterize the change in eigenvalues of layer weights.
toXiv_bot_toot

@arXiv_csCV_bot@mastoxiv.page
2025-10-06 10:05:29

Zero-Shot Robustness of Vision Language Models Via Confidence-Aware Weighting
Nikoo Naghavian, Mostafa Tavassolipour
arxiv.org/abs/2510.02913

@arXiv_csLG_bot@mastoxiv.page
2025-10-10 11:16:59

Convergence Theorems for Entropy-Regularized and Distributional Reinforcement Learning
Yash Jhaveri, Harley Wiltzer, Patrick Shafto, Marc G. Bellemare, David Meger
arxiv.org/abs/2510.08526

@arXiv_mathNA_bot@mastoxiv.page
2025-10-08 09:03:49

A Warm-basis Method for Bridging Learning and Iteration: a Case Study in Fluorescence Molecular Tomography
Ruchi Guo, Jiahua Jiang, Bangti Jin, Wuwei Ren, Jianru Zhang
arxiv.org/abs/2510.05926

@arXiv_statML_bot@mastoxiv.page
2025-10-07 09:04:12

Transformed $\ell_1$ Regularizations for Robust Principal Component Analysis: Toward a Fine-Grained Understanding
Kun Zhao, Haoke Zhang, Jiayi Wang, Yifei Lou
arxiv.org/abs/2510.03624

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:37:10

S-D-RSM: Stochastic Distributed Regularized Splitting Method for Large-Scale Convex Optimization Problems
Maoran Wang, Xingju Cai, Yongxin Chen
arxiv.org/abs/2511.10133 arxiv.org/pdf/2511.10133 arxiv.org/html/2511.10133
arXiv:2511.10133v1 Announce Type: new
Abstract: This paper investigates the problems large-scale distributed composite convex optimization, with motivations from a broad range of applications, including multi-agent systems, federated learning, smart grids, wireless sensor networks, compressed sensing, and so on. Stochastic gradient descent (SGD) and its variants are commonly employed to solve such problems. However, existing algorithms often rely on vanishing step sizes, strong convexity assumptions, or entail substantial computational overhead to ensure convergence or obtain favorable complexity. To bridge the gap between theory and practice, we integrate consensus optimization and operator splitting techniques (see Problem Reformulation) to develop a novel stochastic splitting algorithm, termed the \emph{stochastic distributed regularized splitting method} (S-D-RSM). In practice, S-D-RSM performs parallel updates of proximal mappings and gradient information for only a randomly selected subset of agents at each iteration. By introducing regularization terms, it effectively mitigates consensus discrepancies among distributed nodes. In contrast to conventional stochastic methods, our theoretical analysis establishes that S-D-RSM achieves global convergence without requiring diminishing step sizes or strong convexity assumptions. Furthermore, it achieves an iteration complexity of $\mathcal{O}(1/\epsilon)$ with respect to both the objective function value and the consensus error. Numerical experiments show that S-D-RSM achieves up to 2--3$\times$ speedup compared to state-of-the-art baselines, while maintaining comparable or better accuracy. These results not only validate the algorithm's theoretical guarantees but also demonstrate its effectiveness in practical tasks such as compressed sensing and empirical risk minimization.
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 13:23:10

Replaced article(s) found for math.OC. arxiv.org/list/math.OC/new
[1/1]:
- A robust BFGS algorithm for unconstrained nonlinear optimization problems
Yaguang Yang
arxiv.org/abs/1212.5929
- Quantum computing and the stable set problem
Alja\v{z} Krpan, Janez Povh, Dunja Pucher
arxiv.org/abs/2405.12845 mastoxiv.page/@arXiv_mathOC_bo
- Mean Field Game with Reflected Jump Diffusion Dynamics: A Linear Programming Approach
Zongxia Liang, Xiang Yu, Keyu Zhang
arxiv.org/abs/2508.20388 mastoxiv.page/@arXiv_mathOC_bo
- Differential Dynamic Programming for the Optimal Control Problem with an Ellipsoidal Target Set a...
Sungjun Eom, Gyunghoon Park
arxiv.org/abs/2509.07546 mastoxiv.page/@arXiv_mathOC_bo
- On the Moreau envelope properties of weakly convex functions
Marien Renaud, Arthur Leclaire, Nicolas Papadakis
arxiv.org/abs/2509.13960 mastoxiv.page/@arXiv_mathOC_bo
- Automated algorithm design via Nevanlinna-Pick interpolation
Ibrahim K. Ozaslan, Tryphon T. Georgiou, Mihailo R. Jovanovic
arxiv.org/abs/2509.21416 mastoxiv.page/@arXiv_mathOC_bo
- Optimal Control of a Bioeconomic Crop-Energy System with Energy Reinvestment
Othman Cherkaoui Dekkaki
arxiv.org/abs/2510.11381 mastoxiv.page/@arXiv_mathOC_bo
- Point Convergence Analysis of the Accelerated Gradient Method for Multiobjective Optimization: Co...
Yingdong Yin
arxiv.org/abs/2510.26382 mastoxiv.page/@arXiv_mathOC_bo
- History-Aware Adaptive High-Order Tensor Regularization
Chang He, Bo Jiang, Yuntian Jiang, Chuwen Zhang, Shuzhong Zhang
arxiv.org/abs/2511.05788
- Equivalence of entropy solutions and gradient flows for pressureless 1D Euler systems
Jos\'e Antonio Carrillo, Sondre Tesdal Galtung
arxiv.org/abs/2312.04932 mastoxiv.page/@arXiv_mathAP_bo
- Kernel Modelling of Fading Memory Systems
Yongkang Huo, Thomas Chaffey, Rodolphe Sepulchre
arxiv.org/abs/2403.11945 mastoxiv.page/@arXiv_eessSY_bo
- The Maximum Theoretical Ground Speed of the Wheeled Vehicle
Altay Zhakatayev, Mukatai Nemerebayev
arxiv.org/abs/2502.15341 mastoxiv.page/@arXiv_physicscl
- Hessian stability and convergence rates for entropic and Sinkhorn potentials via semiconcavity
Giacomo Greco, Luca Tamanini
arxiv.org/abs/2504.11133 mastoxiv.page/@arXiv_mathPR_bo
- Optimizing the ground state energy of the three-dimensional magnetic Dirichlet Laplacian with con...
Matthias Baur
arxiv.org/abs/2504.21597 mastoxiv.page/@arXiv_mathph_bo
- A localized consensus-based sampling algorithm
Arne Bouillon, Alexander Bodard, Panagiotis Patrinos, Dirk Nuyens, Giovanni Samaey
arxiv.org/abs/2505.24861 mastoxiv.page/@arXiv_mathNA_bo
- A Novel Sliced Fused Gromov-Wasserstein Distance
Moritz Piening, Robert Beinert
arxiv.org/abs/2508.02364 mastoxiv.page/@arXiv_csLG_bot/
- Minimal Regret Walras Equilibria for Combinatorial Markets via Duality, Integrality, and Sensitiv...
Alo\"is Duguet, Tobias Harks, Martin Schmidt, Julian Schwarz
arxiv.org/abs/2511.09021 mastoxiv.page/@arXiv_csGT_bot/
toXiv_bot_toot

@arXiv_mathNA_bot@mastoxiv.page
2025-10-03 09:34:11

A Fast solver for high condition linear systems using randomized stable solutions of its blocks
Suvendu Kar, Murugesan Venkatapathi
arxiv.org/abs/2510.02156

@arXiv_statML_bot@mastoxiv.page
2025-09-30 17:59:47

Crosslisted article(s) found for stat.ML. arxiv.org/list/stat.ML/new
[3/3]:
- Overlap-Adaptive Regularization for Conditional Average Treatment Effect Estimation
Valentyn Melnychuk, Dennis Frauen, Jonas Schweisthal, Stefan Feuerriegel

@arXiv_csLG_bot@mastoxiv.page
2025-09-30 14:35:01

Physics-informed learning under mixing: How physical knowledge speeds up learning
Anna Scampicchio, Leonardo F. Toso, Rahel Rickenbach, James Anderson, Melanie N. Zeilinger
arxiv.org/abs/2509.24801

@arXiv_statML_bot@mastoxiv.page
2025-09-30 09:30:11

Statistical Inference for Gradient Boosting Regression
Haimo Fang, Kevin Tan, Giles Hooker
arxiv.org/abs/2509.23127 arxiv.org/pdf/2509.2312…

@arXiv_mathNA_bot@mastoxiv.page
2025-09-30 11:35:21

Mixed-Derivative Total Variation
Vincent Guillemet, Michael Unser
arxiv.org/abs/2509.23995 arxiv.org/pdf/2509.23995

@arXiv_csLG_bot@mastoxiv.page
2025-09-29 11:32:27

(Sometimes) Less is More: Mitigating the Complexity of Rule-based Representation for Interpretable Classification
Luca Bergamin, Roberto Confalonieri, Fabio Aiolli
arxiv.org/abs/2509.22384

@arXiv_mathOC_bot@mastoxiv.page
2025-09-30 12:10:51

Bundle Network: a Machine Learning-Based Bundle Method
Francesca Demelas, Joseph Le Roux, Antonio Frangioni, Mathieu Lacroix, Emiliano Traversi, Roberto Wolfler Calvo
arxiv.org/abs/2509.24736

@arXiv_mathOC_bot@mastoxiv.page
2025-09-29 09:23:57

An Efficient ADMM Method for Ratio-Type Nonconvex and Nonsmooth Minimization in Sparse Recovery
Lang Yu, Nanjing Huang
arxiv.org/abs/2509.21969