
2025-07-11 07:31:01
BOOST: Out-of-Distribution-Informed Adaptive Sampling for Bias Mitigation in Stylistic Convolutional Neural Networks
Mridula Vijendran, Shuang Chen, Jingjing Deng, Hubert P. H. Shum
https://arxiv.org/abs/2507.07134
BOOST: Out-of-Distribution-Informed Adaptive Sampling for Bias Mitigation in Stylistic Convolutional Neural Networks
Mridula Vijendran, Shuang Chen, Jingjing Deng, Hubert P. H. Shum
https://arxiv.org/abs/2507.07134
USD: A User-Intent-Driven Sampling and Dual-Debiasing Framework for Large-Scale Homepage Recommendations
Jiaqi Zheng, Cheng Guo, Yi Cao, Chaoqun Hou, Tong Liu, Bo Zheng
https://arxiv.org/abs/2507.06503
On the Reliability of Sampling Strategies in Offline Recommender Evaluation
Bruno L. Pereira, Alan Said, Rodrygo L. T. Santos
https://arxiv.org/abs/2508.05398 https://
Meter-scale Observations of Equatorial Plasma Turbulence
Magnus F Ivarsen, Lasse B N Clausen, Yaqi Jin, Jaeheung Park
https://arxiv.org/abs/2506.08665 http…
Multi-Fidelity Stochastic Trust Region Method with Adaptive Sampling
Yunsoo Ha, Juliane Mueller
https://arxiv.org/abs/2508.03901 https://arxiv.org/pdf/2508…
This https://arxiv.org/abs/2412.04338 has been replaced.
initial toot: https://mastoxiv.page/@ar…
This https://arxiv.org/abs/2502.13583 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_mat…
This https://arxiv.org/abs/2412.12405 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_sta…
Entropy-Based Methods to Address Sampling Bias in Archaeological Predictive Modeling
Mehmet S{\i}dd{\i}k \c{C}ad{\i}rc{\i}, Golnaz Shahtahmassebi
https://arxiv.org/abs/2508.02272
The seeds of the future are in the present: A blind exploration of metastable states
Timoth\'ee Devergne, Vladimir Kostic, Massimiliano Pontil, Michele Parrinello
https://arxiv.org/abs/2508.01477
MambaRate: Speech Quality Assessment Across Different Sampling Rates
Panos Kakoulidis, Iakovi Alexiou, Junkwang Oh, Gunu Jho, Inchul Hwang, Pirros Tsiakoulis, Aimilios Chalamandaris
https://arxiv.org/abs/2507.12090
Multilevel Stochastic Gradient Descent for Optimal Control Under Uncertainty
Niklas Baumgarten, David Schneiderhan
https://arxiv.org/abs/2506.02647 https:/…