
2025-10-09 10:51:31
Bridged Clustering for Representation Learning: Semi-Supervised Sparse Bridging
Patrick Peixuan Ye, Chen Shani, Ellen Vitercik
https://arxiv.org/abs/2510.07182 https://
Bridged Clustering for Representation Learning: Semi-Supervised Sparse Bridging
Patrick Peixuan Ye, Chen Shani, Ellen Vitercik
https://arxiv.org/abs/2510.07182 https://
Leveraging Information Divergence for Robust Semi-Supervised Fetal Ultrasound Image Segmentation
Fangyijie Wang, Gu\'enol\'e Silvestre, Kathleen M. Curran
https://arxiv.org/abs/2509.06495
Semi-supervised Deep Transfer for Regression without Domain Alignment
Mainak Biswas, Ambedkar Dukkipati, Devarajan Sridharan
https://arxiv.org/abs/2509.05092 https://
Enhancement of Quantum Semi-Supervised Learning via Improved Laplacian and Poisson Methods
Hamed Gholipour, Farid Bozorgnia, Hamzeh Mohammadigheymasi, Kailash Hambarde, Javier Mancilla, Hugo Proenca, Joao Neves, Moharram Challenger
https://arxiv.org/abs/2508.02054
Replaced article(s) found for cs.AI. https://arxiv.org/list/cs.AI/new
[3/6]:
- Shaping Sparse Rewards in Reinforcement Learning: A Semi-supervised Approach
Wenyun Li, Wenjie Huang, Chen Sun
Pitch-Conditioned Instrument Sound Synthesis From an Interactive Timbre Latent Space
Christian Limberg, Fares Schulz, Zhe Zhang, Stefan Weinzierl
https://arxiv.org/abs/2510.04339
WOCD: A Semi-Supervised Method for Overlapping Community Detection Using Weak Cliques
Shaozhen Ma, Hanchen Wang, Dong Wen, Wenjie Zhang, Wei Huang, Ying Zhang
https://arxiv.org/abs/2508.00927
A Semi-Supervised Federated Learning Framework with Hierarchical Clustering Aggregation for Heterogeneous Satellite Networks
Zhuocheng Liu, Zhishu Shen, Qiushi Zheng, Tiehua Zhang, Zheng Lei, Jiong Jin
https://arxiv.org/abs/2507.22339
On the sample complexity of semi-supervised multi-objective learning
Tobias Wegel, Geelon So, Junhyung Park, Fanny Yang
https://arxiv.org/abs/2508.17152 https://
Mouse-Guided Gaze: Semi-Supervised Learning of Intention-Aware Representations for Reading Detection
Seongsil Heo, Roberto Manduchi
https://arxiv.org/abs/2509.19574 https://
SpikeMatch: Semi-Supervised Learning with Temporal Dynamics of Spiking Neural Networks
Jini Yang, Beomseok Oh, Seungryong Kim, Sunok Kim
https://arxiv.org/abs/2509.22581 https:/…
AI-Assisted Pleural Effusion Volume Estimation from Contrast-Enhanced CT Images
Sanhita Basu, Tomas Fr\"oding, Ali Teymur Kahraman, Dimitris Toumpanakis, Tobias Sj\"oblom
https://arxiv.org/abs/2510.03856
Semi-supervised classification of Stars, Galaxies and Quasars using K-means and Random Forest
Vahid Asadi, Hosein Haghi, Akram Hasani Zonoozi
https://arxiv.org/abs/2507.14072
Generalized few-shot transfer learning architecture for modeling the EDFA gain spectrum
Agastya Raj, Zehao Wang, Tingjun Chen, Daniel C Kilper, Marco Ruffini
https://arxiv.org/abs/2507.21728
Enhancing Lung Disease Diagnosis via Semi-Supervised Machine Learning
Xiaoran Xua, In-Ho Rab, Ravi Sankarc
https://arxiv.org/abs/2507.16845 https://arxiv.o…
Adversarial Graph Fusion for Incomplete Multi-view Semi-supervised Learning with Tensorial Imputation
Zhangqi Jiang, Tingjin Luo, Xu Yang, Xinyan Liang
https://arxiv.org/abs/2509.15955
A Semi-Supervised Learning Method for the Identification of Bad Exposures in Large Imaging Surveys
Yufeng Luo, Adam D. Myers, Alex Drlica-Wagner, Dario Dematties, Salma Borchani, Frank Valdes, Arjun Dey, David Schlegel, Rongpu Zhou, DESI Legacy Imaging Surveys Team
https://arxiv.org/abs/2507.12784
Learning from Few Samples: A Novel Approach for High-Quality Malcode Generation
Haijian Ma, Daizong Liu, Xiaowen Cai, Pan Zhou, Yulai Xie
https://arxiv.org/abs/2508.18148 https:…
nnFilterMatch: A Unified Semi-Supervised Learning Framework with Uncertainty-Aware Pseudo-Label Filtering for Efficient Medical Segmentation
Yi Yang
https://arxiv.org/abs/2509.19746
TACTFL: Temporal Contrastive Training for Multi-modal Federated Learning with Similarity-guided Model Aggregation
Guanxiong Sun, Majid Mirmehdi, Zahraa Abdallah, Raul Santos-Rodriguez, Ian Craddock, Telmo de Menezes e Silva Filho
https://arxiv.org/abs/2509.17532
Closer to Reality: Practical Semi-Supervised Federated Learning for Foundation Model Adaptation
Guangyu Sun, Jingtao Li, Weiming Zhuang, Chen Chen, Chen Chen, Lingjuan Lyu
https://arxiv.org/abs/2508.16568
SSSUMO: Real-Time Semi-Supervised Submovement Decomposition
Evgenii Rudakov, Jonathan Shock, Otto Lappi, Benjamin Ultan Cowley
https://arxiv.org/abs/2507.08028
Semi-Supervised Learning with Online Knowledge Distillation for Skin Lesion Classification
Siyamalan Manivannan
https://arxiv.org/abs/2508.11511 https://ar…
Semi-MoE: Mixture-of-Experts meets Semi-Supervised Histopathology Segmentation
Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Thien Nguyen, Daisuke Kihara, Tianyang Wang, Xingjian Li, Min Xu
https://arxiv.org/abs/2509.13834
End-to-end Acoustic-linguistic Emotion and Intent Recognition Enhanced by Semi-supervised Learning
Zhao Ren, Rathi Adarshi Rammohan, Kevin Scheck, Sheng Li, Tanja Schultz
https://arxiv.org/abs/2507.07806
Fast and Simple Multiclass Data Segmentation: An Eigendecomposition and Projection-Free Approach
Chiara Faccio, Margherita Porcelli, Francesco Rinaldi, Martin Stoll
https://arxiv.org/abs/2508.09738
Robust Semi-Supervised CT Radiomics for Lung Cancer Prognosis: Cost-Effective Learning with Limited Labels and SHAP Interpretation
Mohammad R. Salmanpour, Amir Hossein Pouria, Sonia Falahati, Shahram Taeb, Somayeh Sadat Mehrnia, Ali Fathi Jouzdani, Mehrdad Oveisi, Ilker Hacihaliloglu, Arman Rahmim
https://arxiv.org/abs/2507.0818…
U-Mamba2-SSL for Semi-Supervised Tooth and Pulp Segmentation in CBCT
Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
https://arxiv.org/abs/2509.20154 https://
Encoder-Inverter Framework for Seismic Acoustic Impedance Inversion
Junheng Peng, Yingtian Liu, Mingwei Wang, Yong Li, Wen Feng
https://arxiv.org/abs/2507.19933 https://
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/9]:
- Simple yet Effective Semi-supervised Knowledge Distillation from Vision-Language Models via Dual-...
Seongjae Kang, Dong Bok Lee, Hyungjoon Jang, Sung Ju Hwang
Contrastive-KAN: A Semi-Supervised Intrusion Detection Framework for Cybersecurity with scarce Labeled Data
Mohammad Alikhani, Reza Kazemi
https://arxiv.org/abs/2507.10808
Data augmentation enables label-specific generation of homologous protein sequences
Lorenzo Rosset, Martin Weigt, Francesco Zamponi
https://arxiv.org/abs/2507.15651
Detecting Galactic Rings in the DESI Legacy Imaging Surveys with Semi-Supervised Deep Learning
Jianzhen Chen, Zhijian Luo, Cheng Cheng, Jun Hou, Shaohua Zhang, Chenggang Shu
https://arxiv.org/abs/2507.07552
Enhancing Dual Network Based Semi-Supervised Medical Image Segmentation with Uncertainty-Guided Pseudo-Labeling
Yunyao Lu, Yihang Wu, Ahmad Chaddad, Tareef Daqqaq, Reem Kateb
https://arxiv.org/abs/2509.13084
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[1/8]:
- Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning
Jungtaek Kim
Efficient Learning for Product Attributes with Compact Multimodal Models
Mandar Kulkarni
https://arxiv.org/abs/2507.19679 https://arxiv.org/pdf/2507.19679
Adapting Medical Vision Foundation Models for Volumetric Medical Image Segmentation via Active Learning and Selective Semi-supervised Fine-tuning
Jin Yang, Daniel S. Marcus, Aristeidis Sotiras
https://arxiv.org/abs/2509.10784
SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation
Guido Manni, Clemente Lauretti, Loredana Zollo, Paolo Soda
https://arxiv.org/abs/2508.06429
Uncertainty-aware Cross-training for Semi-supervised Medical Image Segmentation
Kaiwen Huang, Tao Zhou, Huazhu Fu, Yizhe Zhang, Yi Zhou, Xiao-Jun Wu
https://arxiv.org/abs/2508.09014
Frequency Prior Guided Matching: A Data Augmentation Approach for Generalizable Semi-Supervised Polyp Segmentation
Haoran Xi, Chen Liu, Xiaolin Li
https://arxiv.org/abs/2508.06517
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[1/5]:
- A Computational Theory and Semi-Supervised Algorithm for Clustering
Nassir Mohammad
ALFred: An Active Learning Framework for Real-world Semi-supervised Anomaly Detection with Adaptive Thresholds
Shanle Yao, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Hamed Tabkhi
https://arxiv.org/abs/2508.09058
When Is Prior Knowledge Helpful? Exploring the Evaluation and Selection of Unsupervised Pretext Tasks from a Neuro-Symbolic Perspective
Lin-Han Jia, Si-Yu Han, Wen-Chao Hu, Jie-Jing Shao, Wen-Da Wei, Zhi Zhou, Lan-Zhe Guo, Yu-Feng Li
https://arxiv.org/abs/2508.07299