Tootfinder

Opt-in global Mastodon full text search. Join the index!

@jlpiraux@wallonie-bruxelles.social
2026-01-11 07:54:26

The case for putting a European military presence in Greenland
euobserver.com/eu-and-the-worl

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:35:40

An inexact semismooth Newton-Krylov method for semilinear elliptic optimal control problem
Shiqi Chen, Xuesong Chen
arxiv.org/abs/2511.10058 arxiv.org/pdf/2511.10058 arxiv.org/html/2511.10058
arXiv:2511.10058v1 Announce Type: new
Abstract: An inexact semismooth Newton method has been proposed for solving semi-linear elliptic optimal control problems in this paper. This method incorporates the generalized minimal residual (GMRES) method, a type of Krylov subspace method, to solve the Newton equations and utilizes nonmonotonic line search to adjust the iteration step size. The original problem is reformulated into a nonlinear equation through variational inequality principles and discretized using a second-order finite difference scheme. By leveraging slanting differentiability, the algorithm constructs semismooth Newton directions and employs GMRES method to inexactly solve the Newton equations, significantly reducing computational overhead. A dynamic nonmonotonic line search strategy is introduced to adjust stepsizes adaptively, ensuring global convergence while overcoming local stagnation. Theoretical analysis demonstrates that the algorithm achieves superlinear convergence near optimal solutions when the residual control parameter $\eta_k$ approaches to 0. Numerical experiments validate the method's accuracy and efficiency in solving semilinear elliptic optimal control problems, corroborating theoretical insights.
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:41:00

Minimizing smooth Kurdyka-{\L}ojasiewicz functions via generalized descent methods: Convergence rate and complexity
Masoud Ahookhosh, Susan Ghaderi, Alireza Kabgani, Morteza Rahimi
arxiv.org/abs/2511.10414 arxiv.org/pdf/2511.10414 arxiv.org/html/2511.10414
arXiv:2511.10414v1 Announce Type: new
Abstract: This paper addresses the generalized descent algorithm (DEAL) for minimizing smooth functions, which is analyzed under the Kurdyka-{\L}ojasiewicz (KL) inequality. In particular, the suggested algorithm guarantees a sufficient decrease by adapting to the cost function's geometry. We leverage the KL property to establish the global convergence, convergence rates, and complexity. A particular focus is placed on the linear convergence of generalized descent methods. We show that the constant step-size and Armijo line search strategies along a generalized descent direction satisfy our generalized descent condition. Additionally, for nonsmooth functions by leveraging the smoothing techniques such as forward-backward and high-order Moreau envelopes, we show that the boosted proximal gradient method (BPGA) and the boosted high-order proximal-point (BPPA) methods are also specific cases of DEAL, respectively. It is notable that if the order of the high-order proximal term is chosen in a certain way (depending on the KL exponent), then the sequence generated by BPPA converges linearly for an arbitrary KL exponent. Our preliminary numerical experiments on inverse problems and LASSO demonstrate the efficiency of the proposed methods, validating our theoretical findings.
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:50:00

(Adaptive) Scaled gradient methods beyond locally Holder smoothness: Lyapunov analysis, convergence rate and complexity
Susan Ghaderi, Morteza Rahimi, Yves Moreau, Masoud Ahookhosh
arxiv.org/abs/2511.10425 arxiv.org/pdf/2511.10425 arxiv.org/html/2511.10425
arXiv:2511.10425v1 Announce Type: new
Abstract: This paper addresses the unconstrained minimization of smooth convex functions whose gradients are locally Holder continuous. Building on these results, we analyze the Scaled Gradient Algorithm (SGA) under local smoothness assumptions, proving its global convergence and iteration complexity. Furthermore, under local strong convexity and the Kurdyka-Lojasiewicz (KL) inequality, we establish linear convergence rates and provide explicit complexity bounds. In particular, we show that when the gradient is locally Lipschitz continuous, SGA attains linear convergence for any KL exponent. We then introduce and analyze an adaptive variant of SGA (AdaSGA), which automatically adjusts the scaling and step-size parameters. For this method, we show global convergence, and derive local linear rates under strong convexity.
toXiv_bot_toot