
2025-08-12 11:51:13
SGD Convergence under Stepsize Shrinkage in Low-Precision Training
Vincent-Daniel Yun
https://arxiv.org/abs/2508.07142 https://arxiv.org/pdf/2508.07142
SGD Convergence under Stepsize Shrinkage in Low-Precision Training
Vincent-Daniel Yun
https://arxiv.org/abs/2508.07142 https://arxiv.org/pdf/2508.07142
Almost Sure Convergence for the Last Iterate of Stochastic Gradient Descent Schemes
Marcel Hudiani
https://arxiv.org/abs/2507.07281 https://
Online Quantum State Tomography via Stochastic Gradient Descent
Jian-Feng Cai, Yuling Jiao, Yinan Li, Xiliang Lu, Jerry Zhijian Yang, Juntao You
https://arxiv.org/abs/2507.07601
Non-Asymptotic Analysis of Online Local Private Learning with SGD
Enze Shi, Jinhan Xie, Bei Jiang, Linglong Kong, Xuming He
https://arxiv.org/abs/2507.07041
PLRV-O: Advancing Differentially Private Deep Learning via Privacy Loss Random Variable Optimization
Qin Yang, Nicholas Stout, Meisam Mohammady, Han Wang, Ayesha Samreen, Christopher J Quinn, Yan Yan, Ashish Kundu, Yuan Hong
https://arxiv.org/abs/2509.06264
Statistical Inference for Differentially Private Stochastic Gradient Descent
Xintao Xia, Linjun Zhang, Zhanrui Cai
https://arxiv.org/abs/2507.20560 https://
Can SGD Handle Heavy-Tailed Noise?
Ilyas Fatkhullin, Florian H\"ubler, Guanghui Lan
https://arxiv.org/abs/2508.04860 https://arxiv.org/pdf/2508.04860
Comparative Analysis of Novel NIRMAL Optimizer Against Adam and SGD with Momentum
Nirmal Gaud, Surej Mouli, Preeti Katiyar, Vaduguru Venkata Ramya
https://arxiv.org/abs/2508.04293
Stochastic versus Deterministic in Stochastic Gradient Descent
Runze Li, Jintao Xu, Wenxun Xing
https://arxiv.org/abs/2509.02912 https://arxiv.org/pdf/2509…
Cooperative SGD with Dynamic Mixing Matrices
Soumya Sarkar, Shweta Jain
https://arxiv.org/abs/2508.14565 https://arxiv.org/pdf/2508.14565
Information Entropy-Based Scheduling for Communication-Efficient Decentralized Learning
Jaiprakash Nagar, Zheng Chen, Marios Kountouris, Photios A. Stavrou
https://arxiv.org/abs/2507.17426
A Study of Hybrid and Evolutionary Metaheuristics for Single Hidden Layer Feedforward Neural Network Architecture
Gautam Siddharth Kashyap, Md Tabrez Nafis, Samar Wazir
https://arxiv.org/abs/2506.15737
Revisit Stochastic Gradient Descent for Strongly Convex Objectives: Tight Uniform-in-Time Bounds
Kang Chen, Yasong Feng, Tianyu Wang
https://arxiv.org/abs/2508.20823 https://
Stochastic gradient with least-squares control variates
Fabio Nobile, Matteo Raviola, Nathan Schaeffer
https://arxiv.org/abs/2507.20981 https://arxiv.org/p…
Optimal Condition for Initialization Variance in Deep Neural Networks: An SGD Dynamics Perspective
Hiroshi Horii (SU), Sothea Has (KHM)
https://arxiv.org/abs/2508.12834 https://…
Stabilization of Perturbed Loss Function: Differential Privacy without Gradient Noise
Salman Habib, Remi Chou, Taejoon Kim
https://arxiv.org/abs/2508.15523 https://
Explainable Learning Rate Regimes for Stochastic Optimization
Zhuang Yang
https://arxiv.org/abs/2508.13639 https://arxiv.org/pdf/2508.13639
Last-Iterate Complexity of SGD for Convex and Smooth Stochastic Problems
Guillaume Garrigos, Daniel Cortild, Lucas Ketels, Juan Peypouquet
https://arxiv.org/abs/2507.14122