
Communication-Efficient Publication of Sparse Vectors under Differential Privacy
In this work, we propose a differentially private algorithm for publishing matrices aggregated from sparse vectors. These matrices include social network adjacency matrices, user-item interaction matrices in recommendation systems, and single nucleotide polymorphisms (SNPs) in DNA data. Traditionally, differential privacy in vector collection relies on randomized response, but this approach incurs high communication costs. Specifically, for a matrix with $N$ users, $n$ columns, and $m$ nonzero …