
On the Consistency and Performance of the Iterative Bayesian Update
For many social, scientific, and commercial purposes, it is often important to estimate the distribution of the users' data regarding a sensitive attribute, e.g., their ages, locations, etc. To allow this estimation while protecting the users' privacy, every user applies a local privacy protection mechanism that releases a noisy (sanitized) version of their original datum to the data collector; then the original distribution is estimated using one of the known methods, such as the matrix invers…