Deep Active Learning for Lung Disease Severity Classification from Chest X-rays: Learning with Less Data in the Presence of Class Imbalance
Roy M. Gabriel, Mohammadreza Zandehshahvar, Marly van Assen, Nattakorn Kittisut, Kyle Peters, Carlo N. De Cecco, Ali Adibi
https://arxiv.org/abs/2508.21263
RANA: Robust Active Learning for Noisy Network Alignment
Yixuan Nan, Xixun Lin, Yanmin Shang, Zhuofan Li, Can Zhao, Yanan Cao
https://arxiv.org/abs/2507.22434 https://
A GENERIC-guided active learning SPH method for viscoelastic fluids using Gaussian process regression
Xuekai Dong, David Nieto Simavilla, Jie Ouyang, Xiaodong Wang, Marco Ellero
https://arxiv.org/abs/2506.21877
StepAL: Step-aware Active Learning for Cataract Surgical Videos
Nisarg A. Shah, Bardia Safaei, Shameema Sikder, S. Swaroop Vedula, Vishal M. Patel
https://arxiv.org/abs/2507.22059
Advancing Learnable Multi-Agent Pathfinding Solvers with Active Fine-Tuning
Anton Andreychuk, Konstantin Yakovlev, Aleksandr Panov, Alexey Skrynnik
https://arxiv.org/abs/2506.23793
ActLoc: Learning to Localize on the Move via Active Viewpoint Selection
Jiajie Li, Boyang Sun, Luca Di Giammarino, Hermann Blum, Marc Pollefeys
https://arxiv.org/abs/2508.20981 …
Active Learning for Predicting the Enthalpy of Mixing inBinary Liquids Based on Ab Initio Molecular Dynamics
Quentin Bizot, Ryo Tamura, Guillaume Deffrennes
https://arxiv.org/abs/2507.20885
Active Learning for Neurosymbolic Program Synthesis
Celeste Barnaby, Qiaochu Chen, Ramya Ramalingam, Osbert Bastani, Isil Dillig
https://arxiv.org/abs/2508.15750 https://…
Automated simulation-based design via multi-fidelity active learning and optimisation for laser direct drive implosions
A. J. Crilly, P. W. Moloney, D. Shi, E. A. Ferdinandi
https://arxiv.org/abs/2508.20878
Replaced article(s) found for stat.ML. https://arxiv.org/list/stat.ML/new
[1/1]:
- Active learning for level set estimation under input uncertainty and its extensions
Yu Inatsu, Masayuki Karasuyama, Keiichi Inoue, Ichiro Takeuchi
Balancing the exploration-exploitation trade-off in active learning for surrogate model-based reliability analysis via multi-objective optimization
Jonathan A. Moran, Pablo G. Morato
https://arxiv.org/abs/2508.18170
Reservoir Computation with Networks of Differentiating Neuron Ring Oscillators
Alexander Yeung, Peter DelMastro, Arjun Karuvally, Hava Siegelmann, Edward Rietman, Hananel Hazan
https://arxiv.org/abs/2507.21377
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/5]:
- Active learning for level set estimation under input uncertainty and its extensions
Yu Inatsu, Masayuki Karasuyama, Keiichi Inoue, Ichiro Takeuchi
TS-Insight: Visualizing Thompson Sampling for Verification and XAI
Parsa Vares, \'Eloi Durant, Jun Pang, Nicolas M\'edoc, Mohammad Ghoniem
https://arxiv.org/abs/2507.19898
Euclid: A machine-learning search for dual and lensed AGN at sub-arcsec separations
L. Ulivi, F. Mannucci, M. Scialpi, C. Marconcini, G. Cresci, A. Marconi, A. Feltre, M. Ginolfi, F. Ricci, D. Sluse, F. Belfiore, E. Bertola, C. Bracci, E. Cataldi, M. Ceci, Q. D'Amato, I. Lamperti, R. B. Metcalf, B. Moreschini, M. Perna, G. Tozzi, G. Venturi, M. V. Zanchettin, Y. Fu, M. Huertas-Company, M. Mezcua, M. P"ontinen, V. Scottez, M. Siudek, H. Teimoorinia, I. T. Andika, J. A. Acevedo …
Conservative quantum offline model-based optimization
Kristian Sotirov, Annie E. Paine, Savvas Varsamopoulos, Antonio A. Gentile, Osvaldo Simeone
https://arxiv.org/abs/2506.19714 …
Atomistic understanding of hydrogen bubble-induced embrittlement in tungsten enabled by machine learning molecular dynamics
Yu Bao, Keke Song, Jiahui Liu, Yanzhou Wang, Yifei Ning, Penghua Ying, Ping Qian
https://arxiv.org/abs/2508.20350
*I bought an actioncam.*
Finally!
I'm learning how to use it properly. I tried to capture some impressions from our #cycling ride last weekend near #Tegernsee. (And learned that I should really buy an appropriate SD Card.)
Don't worry, I'm still commited to photograph…
Learning Approach to Efficient Vision-based Active Tracking of a Flying Target by an Unmanned Aerial Vehicle
Jagadeswara PKV Pothuri, Aditya Bhatt, Prajit KrisshnaKumar, Manaswin Oddiraju, Souma Chowdhury
https://arxiv.org/abs/2506.18264
Findings of MEGA: Maths Explanation with LLMs using the Socratic Method for Active Learning
Tosin Adewumi, Foteini Simistira Liwicki, Marcus Liwicki, Viktor Gardelli, Lama Alkhaled, Hamam Mokayed
https://arxiv.org/abs/2507.12079
Metric Matters: A Formal Evaluation of Similarity Measures in Active Learning for Cyber Threat Intelligence
Sidahmed Benabderrahmane, Talal Rahwan
https://arxiv.org/abs/2508.19019
A Learning-based Hybrid System Approach for Detecting Contingencies in Distribution Grids with Inverter-Based Resources
Hamid Varmazyari, Masoud H. Nazari
https://arxiv.org/abs/2508.18500
Hamiltonian parameter inference from RIXS spectra with active learning
Marton K. Lajer, Xin Dai, Kipton Barros, Matthew R. Carbone, S. Johnston, M. P. M. Dean
https://arxiv.org/abs/2507.16021
Active Learning for Text-to-Speech Synthesis with Informative Sample Collection
Kentaro Seki, Shinnosuke Takamichi, Takaaki Saeki, Hiroshi Saruwatari
https://arxiv.org/abs/2507.08319
Physical Embodiment Enables Information Processing Beyond Explicit Sensing in Active Matter
Diptabrata Paul, Nikola Milosevic, Nico Scherf, Frank Cichos
https://arxiv.org/abs/2508.17921
Multi-institutional assessment of Peer Instruction implementation and impacts using the Framework for Interactive Learning in Lectures
Ibukunoluwa Bukola, Meagan Sundstrom, Justin Gambrell, Olive Ross, Adrienne L. Traxler, Eric Brewe
https://arxiv.org/abs/2508.08422
Human-AI Synergy in Adaptive Active Learning for Continuous Lithium Carbonate Crystallization Optimization
Shayan S. Mousavi Masouleh, Corey A. Sanz, Ryan P. Jansonius, Cara Cronin, Jason E. Hein, Jason Hattrick-Simpers
https://arxiv.org/abs/2507.19316
CLEVER: Stream-based Active Learning for Robust Semantic Perception from Human Instructions
Jongseok Lee, Timo Birr, Rudolph Triebel, Tamim Asfour
https://arxiv.org/abs/2507.15499
Efficient dataset construction using active learning and uncertainty-aware neural networks for plasma turbulent transport surrogate models
Aaron Ho (MIT Plasma Science and Fusion Center, Cambridge, USA), Lorenzo Zanisi (UKAEA Culham Centre for Fusion Energy, Abingdon, UK), Bram de Leeuw (Radboud University, Nijmegen, Netherlands), Vincent Galvan (MIT Plasma Science and Fusion Center, Cambridge, USA), Pablo Rodriguez-Fernandez (MIT Plasma Science and Fusion Center, Cambridge, USA), Nath…
Partially Observable Residual Reinforcement Learning for PV-Inverter-Based Voltage Control in Distribution Grids
Sarra Bouchkati, Ramil Sabirov, Steffen Kortmann, Andreas Ulbig
https://arxiv.org/abs/2506.19353
DRMD: Deep Reinforcement Learning for Malware Detection under Concept Drift
Shae McFadden, Myles Foley, Mario D'Onghia, Chris Hicks, Vasilios Mavroudis, Nicola Paoletti, Fabio Pierazzi
https://arxiv.org/abs/2508.18839
aims-PAX: Parallel Active eXploration for the automated construction of Machine Learning Force Fields
Tobias Henkes, Shubham Sharma, Alexandre Tkatchenko, Mariana Rossi, Igor Poltavskyi
https://arxiv.org/abs/2508.12888
Active {\Delta}-learning with universal potentials for global structure optimization
Joe Pitfield, Mads-Peter Verner Christiansen, Bj{\o}rk Hammer
https://arxiv.org/abs/2507.18485
Selection-Based Vulnerabilities: Clean-Label Backdoor Attacks in Active Learning
Yuhan Zhi, Longtian Wang, Xiaofei Xie, Chao Shen, Qiang Hu, Xiaohong Guan
https://arxiv.org/abs/2508.05681
Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers
Ian Chuang, Andrew Lee, Dechen Gao, Jinyu Zou, Iman Soltani
https://arxiv.org/abs/2507.15833
A Principled Framework to Evaluate Quality of AC-OPF Datasets for Machine Learning: Benchmarking a Novel, Scalable Generation Method
Matteo Ba\`u (Ricerca sul Sistema Energetico), Luca Perbellini (Politecnico di Milano), Samuele Grillo (Politecnico di Milano)
https://arxiv.org/abs/2508.19083
Revisiting Active Learning under (Human) Label Variation
Cornelia Gruber, Helen Alber, Bernd Bischl, G\"oran Kauermann, Barbara Plank, Matthias A{\ss}enmacher
https://arxiv.org/abs/2507.02593
VQA support to Arabic Language Learning Educational Tool
Khaled Bachir Delassi (LIM Lab, Amar Telidji University, Laghouat, Algeria), Lakhdar Zeggane (LIM Lab, Amar Telidji University, Laghouat, Algeria), Hadda Cherroun (LIM Lab, Amar Telidji University, Laghouat, Algeria), Abdelhamid Haouhat (LIM Lab, Amar Telidji University, Laghouat, Algeria), Kaoutar Bouzouad (Computer Science Dept., USTHB, Algiers, Algeria)
ALFred: An Active Learning Framework for Real-world Semi-supervised Anomaly Detection with Adaptive Thresholds
Shanle Yao, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Hamed Tabkhi
https://arxiv.org/abs/2508.09058
Bayesian Active Learning of (small) Quantile Sets through Expected Estimator Modification
Romain Ait Abdelmalek-Lomenech (L2S, RT-UQ), Julien Bect (L2S, RT-UQ), Emmanuel Vazquez (L2S, RT-UQ)
https://arxiv.org/abs/2506.13211
Replaced article(s) found for cond-mat.soft. https://arxiv.org/list/cond-mat.soft/new
[1/1]:
- Inferring activity from the flow field around active colloidal particles using deep learning
Aditya Mohapatra, Aditya Kumar, Mayurakshi Deb, Siddharth Dhomkar, Rajesh Singh
…
MedCAL-Bench: A Comprehensive Benchmark on Cold-Start Active Learning with Foundation Models for Medical Image Analysis
Ning Zhu, Xiaochuan Ma, Shaoting Zhang, Guotai Wang
https://arxiv.org/abs/2508.03441
Leveraging active learning-enhanced machine-learned interatomic potential for efficient infrared spectra prediction
Nitik Bhatia, Patrick Rinke, Ondrej Krejci
https://arxiv.org/abs/2506.13486
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/5]:
- Active Learning For Repairable Hardware Systems With Partial Coverage
Michael Potter, Beyza Kalkanl{\i}, Deniz Erdo\u{g}mu\c{s}, Michael Everett
Replaced article(s) found for cs.AI. https://arxiv.org/list/cs.AI/new
[1/3]:
- Sophisticated Learning: A novel algorithm for active learning during model-based planning
Hodson, Bassett, van Hoof, Rosman, Solms, Shock, Smith
Replaced article(s) found for cs.FL. https://arxiv.org/list/cs.FL/new
[1/1]:
- Active Learning of Mealy Machines with Timers
V\'eronique Bruy\`ere, Bharat Garhewal, Guillermo A. P\'erez, Ga\"etan Staquet, Frits W. Vaandrager
AL-SPCE -- Reliability analysis for nondeterministic models using stochastic polynomial chaos expansions and active learning
A. Pires, M. Moustapha, S. Marelli, B. Sudret
https://arxiv.org/abs/2507.04553
Learning general pair interactions between self-propelled particles
J\'er\^ome Hem, Alexis Poncet, Pierre Ronceray, Daiki Nishiguchi, Vincent D\'emery
https://arxiv.org/abs/2507.13667
CRED: Counterfactual Reasoning and Environment Design for Active Preference Learning
Yi-Shiuan Tung, Bradley Hayes, Alessandro Roncone
https://arxiv.org/abs/2507.05458
AFABench: A Generic Framework for Benchmarking Active Feature Acquisition
Valter Sch\"utz, Han Wu, Reza Rezvan, Linus Aronsson, Morteza Haghir Chehreghani
https://arxiv.org/abs/2508.14734
DiFuse-Net: RGB and Dual-Pixel Depth Estimation using Window Bi-directional Parallax Attention and Cross-modal Transfer Learning
Kunal Swami, Debtanu Gupta, Amrit Kumar Muduli, Chirag Jaiswal, Pankaj Kumar Bajpai
https://arxiv.org/abs/2506.14709
Replaced article(s) found for cs.FL. https://arxiv.org/list/cs.FL/new
[1/1]:
- Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids
Quentin Aristote (Universit\'e Paris Cit\'e, CNRS, Inria, IRIF, Paris, France)
DUSE: A Data Expansion Framework for Low-resource Automatic Modulation Recognition based on Active Learning
Yao Lu, Hongyu Gao, Zhuangzhi Chen, Dongwei Xu, Yun Lin, Qi Xuan, Guan Gui
https://arxiv.org/abs/2507.12011
HAC-LOCO: Learning Hierarchical Active Compliance Control for Quadruped Locomotion under Continuous External Disturbances
Xiang Zhou, Xinyu Zhang, Qingrui Zhang
https://arxiv.org/abs/2507.02447
MP-ALOE: An r2SCAN dataset for universal machine learning interatomic potentials
Matthew C. Kuner, Aaron D. Kaplan, Kristin A. Persson, Mark Asta, Daryl C. Chrzan
https://arxiv.org/abs/2507.05559
Fast and Accurate RFIC Performance Prediction via Pin Level Graph Neural Networks and Probabilistic Flow
Anahita Asadi, Leonid Popryho, Inna Partin-Vaisband
https://arxiv.org/abs/2508.16403
Learning to See and Act: Task-Aware View Planning for Robotic Manipulation
Yongjie Bai, Zhouxia Wang, Yang Liu, Weixing Chen, Ziliang Chen, Mingtong Dai, Yongsen Zheng, Lingbo Liu, Guanbin Li, Liang Lin
https://arxiv.org/abs/2508.05186
Tactile Gesture Recognition with Built-in Joint Sensors for Industrial Robots
Deqing Song, Weimin Yang, Maryam Rezayati, Hans Wernher van de Venn
https://arxiv.org/abs/2508.12435
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[8/8]:
Active Perception for Tactile Sensing: A Task-Agnostic Attention-Based Approach
NepTrain and NepTrainKit: Automated Active Learning and Visualization Toolkit for Neuroevolution Potentials
Chengbing Chen, Yutong Li, Rui Zhao, Zhoulin Liu, Zheyong Fan, Gang Tang, Zhiyong Wang
https://arxiv.org/abs/2506.01868
WoMAP: World Models For Embodied Open-Vocabulary Object Localization
Tenny Yin, Zhiting Mei, Tao Sun, Lihan Zha, Emily Zhou, Jeremy Bao, Miyu Yamane, Ola Shorinwa, Anirudha Majumdar
https://arxiv.org/abs/2506.01600