Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@mpsgoettingen@academiccloud.social
2025-06-19 09:00:03

#ndwgoecountdown Jupiter: Gasriese im Sonnensystem
Jupiter ist der größte Planet im Sonnensystem; seine Wolkenwirbel und -bänder geben uns Rätsel auf. Unter Eisschichten verbergen seine Monde Europa und Ganymed Ozeane, in denen sich Leben entwickelt haben könnte. Das MPS stellt Weltrauminstrumente vor, die an Bord der Raumsonde JUICE auf dem Weg zum Jupiter sind. Mit Wolkenwir…

Die runde Jupiterscheibe füllt fast das gesamte Bild aus, nur die freien Ecken sind schwarz. Auf der Oberfläche des Planeten sind horizonal vielfarbige Wolkenbänder zu sehen, die gelblich, weiß, orange oder rötlich und selten blassblau erscheinen. Die Bänder sind in sich verwirbelt und teilweise mit Flecken durchsetzt. Einer dieser Wirbel ist besonders groß und auffällig orangerot. Er befindet sich in der unteren rechten Seite der Scheibe und wird begleitet von einem ausgerägten Wirbelfeld dire…
@aardrian@toot.cafe
2025-07-20 14:17:45

“How to avoid that your post about AI helps the hype”
hidde.blog/ai-hype/
Largely agree. I’m careful about the words I use on when I talk / post about it. I avoid terms that anthropomorphize, imply agency, reasoning, etc. I ask people to clarify *which* technology when they say “AI” (…

@matematico314@social.linux.pizza
2025-07-19 15:03:36

Às vezes, tudo o que um homem precisa é de um pouco de café. Me animei o suficiente para estar agora trocando de roupa para ir Š academia, jš que ontem eu não fui.

@davidaugust@mastodon.online
2025-06-18 20:53:48

Further detail about what's been happening expanding on my thread about context: #USpol

Line graph titled "Iran's Uranium Stockpile Surpasses Pre-JCPOA Levels," showing Iran's stockpile of enriched uranium by quarter (in kg) from 2008 to 2025. Key events are marked on the timeline, including when Obama became U.S. president, when the JCPOA (Joint Comprehensive Plan of Action) was agreed upon, when Trump became U.S. president, when the U.S. left the JCPOA, and the start of Trump's second term.

The graph shows a significant increase in uranium stockpiles leading up to the JCPOA agr…
@arXiv_csCR_bot@mastoxiv.page
2025-06-13 08:07:40

Quantifying Azure RBAC Wildcard Overreach
Christophe Parisel
arxiv.org/abs/2506.10755 arxiv.org/pdf/2506.10755

@arXiv_csRO_bot@mastoxiv.page
2025-07-18 09:42:32

Efficient Online Learning and Adaptive Planning for Robotic Information Gathering Based on Streaming Data
Sanjeev Ramkumar Sudha, Joel Jose, Erlend M. Coates
arxiv.org/abs/2507.13053

@hex@kolektiva.social
2025-06-12 10:13:55

I'm not saying any new shit:
"I have almost reached the regrettable conclusion that the Negro's great stumbling block in his stride toward freedom is not the White Citizen's Counciler or the Ku Klux Klanner, but the white moderate, who is more devoted to "order" than to justice; who prefers a negative peace which is the absence of tension to a positive peace which is the presence of justice; who constantly says: "I agree with you in the goal you seek, but I cannot agree with your methods of direct action"; who paternalistically believes he can set the timetable for another man's freedom; who lives by a mythical concept of time and who constantly advises the Negro to wait for a "more convenient season." Shallow understanding from people of good will is more frustrating than absolute misunderstanding from people of ill will. Lukewarm acceptance is much more bewildering than outright rejection."
- Letter from a Birmingham Jail, MLK

@arXiv_csLG_bot@mastoxiv.page
2025-07-11 10:23:31

Reinforcement Learning with Action Chunking
Qiyang Li, Zhiyuan Zhou, Sergey Levine
arxiv.org/abs/2507.07969 arxiv.org/pdf/2507.07969 arxiv.org/html/2507.07969
arXiv:2507.07969v1 Announce Type: new
Abstract: We present Q-chunking, a simple yet effective recipe for improving reinforcement learning (RL) algorithms for long-horizon, sparse-reward tasks. Our recipe is designed for the offline-to-online RL setting, where the goal is to leverage an offline prior dataset to maximize the sample-efficiency of online learning. Effective exploration and sample-efficient learning remain central challenges in this setting, as it is not obvious how the offline data should be utilized to acquire a good exploratory policy. Our key insight is that action chunking, a technique popularized in imitation learning where sequences of future actions are predicted rather than a single action at each timestep, can be applied to temporal difference (TD)-based RL methods to mitigate the exploration challenge. Q-chunking adopts action chunking by directly running RL in a 'chunked' action space, enabling the agent to (1) leverage temporally consistent behaviors from offline data for more effective online exploration and (2) use unbiased $n$-step backups for more stable and efficient TD learning. Our experimental results demonstrate that Q-chunking exhibits strong offline performance and online sample efficiency, outperforming prior best offline-to-online methods on a range of long-horizon, sparse-reward manipulation tasks.
toXiv_bot_toot

@davidaugust@mastodon.online
2025-06-09 04:16:33

"Men acquire a particular quality by constantly acting in a particular way."
-Aristotle
#acting #coaching #inspiration

@mpsgoettingen@academiccloud.social
2025-06-05 12:52:08

#ndwgoecountdown Führungen durch das Max-Planck-Institut für Sonnensystemforschung
Ein Rundgang zu Laboren und Reinräumen des MPS Göttingen bietet Einblicke in Forschungsthemen, Arbeitsweise und aktuelle Weltraumprojekte des Instituts. Die Führungen dauern 60 Minuten und starten im 20-Minuten-Takt.
Teils enge Räumlichkeiten, Teilnehmerzahl beschränkt, Teilnahme nur nach…

Blick in zwei Reinräume, die durch eine Serie großer Glasfenster voneinander abgetrennt sind. Im Vordergrund Labortische, auf denen Monitore, Tastaturen und Rechnergehäuse stehen. Eine Person in Reinraumkleidung ist von der Kamera weg gewandt und bedient nach vorne gelehnt stehend einen Computer. Im Hintergrund mehrere Laborbänke mit vielfältiger Ausrüstung, an der zwei weitere Personen arbeiten.