2025-09-04 08:40:41
Are We SOLID Yet? An Empirical Study on Prompting LLMs to Detect Design Principle Violations
Fatih Pehlivan, Ar\c{c}in \"Ulk\"u Erg\"uzen, Sahand Moslemi Yengejeh, Mayasah Lami, Anil Koyuncu
https://arxiv.org/abs/2509.03093
Are We SOLID Yet? An Empirical Study on Prompting LLMs to Detect Design Principle Violations
Fatih Pehlivan, Ar\c{c}in \"Ulk\"u Erg\"uzen, Sahand Moslemi Yengejeh, Mayasah Lami, Anil Koyuncu
https://arxiv.org/abs/2509.03093
Regression Language Models for Code
Yash Akhauri, Xingyou Song, Arissa Wongpanich, Bryan Lewandowski, Mohamed S. Abdelfattah
https://arxiv.org/abs/2509.26476 https://
ChatGPT in Introductory Programming: Counterbalanced Evaluation of Code Quality, Conceptual Learning, and Student Perceptions
Shiza Andleeb, Brandon Kantorski, Jeffrey C. Carver
https://arxiv.org/abs/2510.00946
PLSEMANTICSBENCH: Large Language Models As Programming Language Interpreters
Aditya Thimmaiah, Jiyang Zhang, Jayanth Srinivasa, Junyi Jessy Li, Milos Gligoric
https://arxiv.org/abs/2510.03415
vibe main
yeet "vibez"
slay main() {
vibez.spill("Hello, World!")
}
https://simonwillison.net/2025/Sep/9/cursed/
LLM-GUARD: Large Language Model-Based Detection and Repair of Bugs and Security Vulnerabilities in C and Python
Akshay Mhatre, Noujoud Nader, Patrick Diehl, Deepti Gupta
https://arxiv.org/abs/2508.16419
{\L}ukasiewicz Logic with Actions for Neural Networks training
Ioana Leu\c{s}tean (University of Bucharest), Bogdan Macovei (University of Bucharest)
https://arxiv.org/abs/2509.13020
A Multilingual Python Programming Language
Saad Ahmed Bazaz, Mirza Omer Beg
https://arxiv.org/abs/2510.09591 https://arxiv.org/pdf/2510.09591
AutoVeriFix: Automatically Correcting Errors and Enhancing Functional Correctness in LLM-Generated Verilog Code
Yan Tan, Xiangchen Meng, Zijun Jiang, Yangdi Lyu
https://arxiv.org/abs/2509.08416
Evaluating Large Language Models for Code Translation: Effects of Prompt Language and Prompt Design
Aamer Aljagthami, Mohammed Banabila, Musab Alshehri, Mohammed Kabini, Mohammad D. Alahmadi
https://arxiv.org/abs/2509.12973
Initial Algebras of Domains via Quotient Inductive-Inductive Types
Simcha van Collem, Niels van der Weide, Herman Geuvers
https://arxiv.org/abs/2509.10187 https://
LLMs are All You Need? Improving Fuzz Testing for MOJO with Large Language Models
Linghan Huang, Peizhou Zhao, Huaming Chen
https://arxiv.org/abs/2510.10179 https://
RepoTransAgent: Multi-Agent LLM Framework for Repository-Aware Code Translation
Ziqi Guan, Xin Yin, Zhiyuan Peng, Chao Ni
https://arxiv.org/abs/2508.17720 https://
On the Evaluation of Large Language Models in Multilingual Vulnerability Repair
Dong wang, Junji Yu, Honglin Shu, Michael Fu, Chakkrit Tantithamthavorn, Yasutaka Kamei, Junjie Chen
https://arxiv.org/abs/2508.03470
RustAssure: Differential Symbolic Testing for LLM-Transpiled C-to-Rust Code
Yubo Bai, Tapti Palit
https://arxiv.org/abs/2510.07604 https://arxiv.org/pdf/25…
PyVeritas: On Verifying Python via LLM-Based Transpilation and Bounded Model Checking for C
Pedro Orvalho, Marta Kwiatkowska
https://arxiv.org/abs/2508.08171 https://