Incremental (k, z)-Clustering on Graphs
Emilio Cruciani, Sebastian Forster, Antonis Skarlatos
https://arxiv.org/abs/2602.08542 https://arxiv.org/pdf/2602.08542 https://arxiv.org/html/2602.08542
arXiv:2602.08542v1 Announce Type: new
Abstract: Given a weighted undirected graph, a number of clusters $k$, and an exponent $z$, the goal in the $(k, z)$-clustering problem on graphs is to select $k$ vertices as centers that minimize the sum of the distances raised to the power $z$ of each vertex to its closest center. In the dynamic setting, the graph is subject to adversarial edge updates, and the goal is to maintain explicitly an exact $(k, z)$-clustering solution in the induced shortest-path metric.
While efficient dynamic $k$-center approximation algorithms on graphs exist [Cruciani et al. SODA 2024], to the best of our knowledge, no prior work provides similar results for the dynamic $(k,z)$-clustering problem. As the main result of this paper, we develop a randomized incremental $(k, z)$-clustering algorithm that maintains with high probability a constant-factor approximation in a graph undergoing edge insertions with a total update time of $\tilde O(k m^{1 o(1)} k^{1 \frac{1}{\lambda}} m)$, where $\lambda \geq 1$ is an arbitrary fixed constant. Our incremental algorithm consists of two stages. In the first stage, we maintain a constant-factor bicriteria approximate solution of size $\tilde{O}(k)$ with a total update time of $m^{1 o(1)}$ over all adversarial edge insertions. This first stage is an intricate adaptation of the bicriteria approximation algorithm by Mettu and Plaxton [Machine Learning 2004] to incremental graphs. One of our key technical results is that the radii in their algorithm can be assumed to be non-decreasing while the approximation ratio remains constant, a property that may be of independent interest.
In the second stage, we maintain a constant-factor approximate $(k,z)$-clustering solution on a dynamic weighted instance induced by the bicriteria approximate solution. For this subproblem, we employ a dynamic spanner algorithm together with a static $(k,z)$-clustering algorithm.
toXiv_bot_toot
Replaced article(s) found for cs.CV. https://arxiv.org/list/cs.CV/new
[1/5]:
- Dual Cluster Contrastive learning for Object Re-Identification
Hantao Yao, Changsheng Xu
Crosslisted article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[2/3]:
- Sharp Structure-Agnostic Lower Bounds for General Functional Estimation
Jikai Jin, Vasilis Syrgkanis
https://arxiv.org/abs/2512.17341 https://mastoxiv.page/@arXiv_statML_bot/115762312049963700
- Timely Information Updating for Mobile Devices Without and With ML Advice
Yu-Pin Hsu, Yi-Hsuan Tseng
https://arxiv.org/abs/2512.17381 https://mastoxiv.page/@arXiv_csNI_bot/115762180316858485
- SWE-Bench : A Framework for the Scalable Generation of Software Engineering Benchmarks from Open...
Wang, Ramalho, Celestino, Pham, Liu, Sinha, Portillo, Osunwa, Maduekwe
https://arxiv.org/abs/2512.17419 https://mastoxiv.page/@arXiv_csSE_bot/115762487015279852
- Perfect reconstruction of sparse signals using nonconvexity control and one-step RSB message passing
Xiaosi Gu, Ayaka Sakata, Tomoyuki Obuchi
https://arxiv.org/abs/2512.17426 https://mastoxiv.page/@arXiv_statML_bot/115762346108219997
- MULTIAQUA: A multimodal maritime dataset and robust training strategies for multimodal semantic s...
Jon Muhovi\v{c}, Janez Per\v{s}
https://arxiv.org/abs/2512.17450 https://mastoxiv.page/@arXiv_csCV_bot/115762717053353674
- When Data Quality Issues Collide: A Large-Scale Empirical Study of Co-Occurring Data Quality Issu...
Emmanuel Charleson Dapaah, Jens Grabowski
https://arxiv.org/abs/2512.17460 https://mastoxiv.page/@arXiv_csSE_bot/115762500123147574
- Behavioural Effects of Agentic Messaging: A Case Study on a Financial Service Application
Olivier Jeunen, Schaun Wheeler
https://arxiv.org/abs/2512.17462 https://mastoxiv.page/@arXiv_csIR_bot/115762430673347625
- Linear Attention for Joint Power Optimization and User-Centric Clustering in Cell-Free Networks
Irched Chafaa, Giacomo Bacci, Luca Sanguinetti
https://arxiv.org/abs/2512.17466 https://mastoxiv.page/@arXiv_eessSY_bot/115762336277179643
- Translating the Rashomon Effect to Sequential Decision-Making Tasks
Dennis Gross, J{\o}rn Eirik Betten, Helge Spieker
https://arxiv.org/abs/2512.17470 https://mastoxiv.page/@arXiv_csAI_bot/115762556506696539
- Alternating Direction Method of Multipliers for Nonlinear Matrix Decompositions
Atharva Awari, Nicolas Gillis, Arnaud Vandaele
https://arxiv.org/abs/2512.17473 https://mastoxiv.page/@arXiv_eessSP_bot/115762580078964235
- TwinSegNet: A Digital Twin-Enabled Federated Learning Framework for Brain Tumor Analysis
Almustapha A. Wakili, Adamu Hussaini, Abubakar A. Musa, Woosub Jung, Wei Yu
https://arxiv.org/abs/2512.17488 https://mastoxiv.page/@arXiv_csCV_bot/115762726884307901
- Resource-efficient medical image classification for edge devices
Mahsa Lavaei, Zahra Abadi, Salar Beigzad, Alireza Maleki
https://arxiv.org/abs/2512.17515 https://mastoxiv.page/@arXiv_eessIV_bot/115762459510336799
- PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning i...
Brussee, Valkema, Weijer, Doeleman, Schrader, Kers
https://arxiv.org/abs/2512.17517 https://mastoxiv.page/@arXiv_csCV_bot/115762741957639051
- HydroGym: A Reinforcement Learning Platform for Fluid Dynamics
Christian Lagemann, et al.
https://arxiv.org/abs/2512.17534 https://mastoxiv.page/@arXiv_physicsfludyn_bot/115762391350754768
- When De-noising Hurts: A Systematic Study of Speech Enhancement Effects on Modern Medical ASR Sys...
Chondhekar, Murukuri, Vasani, Goyal, Badami, Rana, SN, Pandia, Katiyar, Jagadeesh, Gulati
https://arxiv.org/abs/2512.17562 https://mastoxiv.page/@arXiv_csSD_bot/115762423443170715
- Enabling Disaggregated Multi-Stage MLLM Inference via GPU-Internal Scheduling and Resource Sharing
Lingxiao Zhao, Haoran Zhou, Yuezhi Che, Dazhao Cheng
https://arxiv.org/abs/2512.17574 https://mastoxiv.page/@arXiv_csDC_bot/115762425409322293
- SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation i...
N. A. Adarsh Pritam, Jeba Shiney O, Sanyam Jain
https://arxiv.org/abs/2512.17585 https://mastoxiv.page/@arXiv_eessIV_bot/115762479150695610
- MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection an...
Tosin Ige, Christopher Kiekintveld, Aritran Piplai, Asif Rahman, Olukunle Kolade, Sasidhar Kunapuli
https://arxiv.org/abs/2512.17594 https://mastoxiv.page/@arXiv_csCR_bot/115762509298207765
- Confidence-Credibility Aware Weighted Ensembles of Small LLMs Outperform Large LLMs in Emotion De...
Menna Elgabry, Ali Hamdi
https://arxiv.org/abs/2512.17630 https://mastoxiv.page/@arXiv_csCL_bot/115762575512981257
- Generative Multi-Objective Bayesian Optimization with Scalable Batch Evaluations for Sample-Effic...
Madhav R. Muthyala, Farshud Sorourifar, Tianhong Tan, You Peng, Joel A. Paulson
https://arxiv.org/abs/2512.17659 https://mastoxiv.page/@arXiv_statML_bot/115762554519447500
toXiv_bot_toot
Replaced article(s) found for cs.DS. https://arxiv.org/list/cs.DS/new
[1/1]:
- Fully Dynamic Adversarially Robust Correlation Clustering in Polylogarithmic Update Time
Vladimir Braverman, Prathamesh Dharangutte, Shreyas Pai, Vihan Shah, Chen Wang
https://arxiv.org/abs/2411.09979 https://mastoxiv.page/@arXiv_csDS_bot/113502653187863544
- A Simple and Combinatorial Approach to Proving Chernoff Bounds and Their Generalizations
William Kuszmaul
https://arxiv.org/abs/2501.03488 https://mastoxiv.page/@arXiv_csDS_bot/113791396712128907
- The Structural Complexity of Matrix-Vector Multiplication
Emile Anand, Jan van den Brand, Rose McCarty
https://arxiv.org/abs/2502.21240 https://mastoxiv.page/@arXiv_csDS_bot/114097340825270885
- Clustering under Constraints: Efficient Parameterized Approximation Schemes
Sujoy Bhore, Ameet Gadekar, Tanmay Inamdar
https://arxiv.org/abs/2504.06980 https://mastoxiv.page/@arXiv_csDS_bot/114312444050875805
- Minimizing Envy and Maximizing Happiness in Graphical House Allocation
Anubhav Dhar, Ashlesha Hota, Palash Dey, Sudeshna Kolay
https://arxiv.org/abs/2505.00296 https://mastoxiv.page/@arXiv_csDS_bot/114437013364446063
- Fast and Simple Densest Subgraph with Predictions
Thai Bui, Luan Nguyen, Hoa T. Vu
https://arxiv.org/abs/2505.12600 https://mastoxiv.page/@arXiv_csDS_bot/114538936921930134
- Compressing Suffix Trees by Path Decompositions
Becker, Cenzato, Gagie, Kim, Koerkamp, Manzini, Prezza
https://arxiv.org/abs/2506.14734 https://mastoxiv.page/@arXiv_csDS_bot/114703384646892523
- Improved sampling algorithms and functional inequalities for non-log-concave distributions
Yuchen He, Zhehan Lei, Jianan Shao, Chihao Zhang
https://arxiv.org/abs/2507.11236 https://mastoxiv.page/@arXiv_csDS_bot/114862112197588124
- Deterministic Lower Bounds for $k$-Edge Connectivity in the Distributed Sketching Model
Peter Robinson, Ming Ming Tan
https://arxiv.org/abs/2507.11257 https://mastoxiv.page/@arXiv_csDS_bot/114862223634372292
- Optimally detecting uniformly-distributed $\ell_2$ heavy hitters in data streams
Santhoshini Velusamy, Huacheng Yu
https://arxiv.org/abs/2509.07286 https://mastoxiv.page/@arXiv_csDS_bot/115178875220889588
- Uncrossed Multiflows and Applications to Disjoint Paths
Chandra Chekuri, Guyslain Naves, Joseph Poremba, F. Bruce Shepherd
https://arxiv.org/abs/2511.00254 https://mastoxiv.page/@arXiv_csDS_bot/115490402963680492
- Dynamic Matroids: Base Packing and Covering
Tijn de Vos, Mara Grilnberger
https://arxiv.org/abs/2511.15460 https://mastoxiv.page/@arXiv_csDS_bot/115580946319285096
- Branch-width of connectivity functions is fixed-parameter tractable
Tuukka Korhonen, Sang-il Oum
https://arxiv.org/abs/2601.04756 https://mastoxiv.page/@arXiv_csDS_bot/115864074799755995
- CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas, Yihe Dong, Gautam Kamath, Jonathan Ullman
https://arxiv.org/abs/2006.06618
- The Ideal Membership Problem and Abelian Groups
Andrei A. Bulatov, Akbar Rafiey
https://arxiv.org/abs/2201.05218
- Bridging Classical and Quantum: Group-Theoretic Approach to Quantum Circuit Simulation
Daksh Shami
https://arxiv.org/abs/2407.19575 https://mastoxiv.page/@arXiv_quantph_bot/112874282709517475
- Young domination on Hamming rectangles
Janko Gravner, Matja\v{z} Krnc, Martin Milani\v{c}, Jean-Florent Raymond
https://arxiv.org/abs/2501.03788 https://mastoxiv.page/@arXiv_mathCO_bot/113791421814248215
- On the Space Complexity of Online Convolution
Joel Daniel Andersson, Amir Yehudayoff
https://arxiv.org/abs/2505.00181 https://mastoxiv.page/@arXiv_csCC_bot/114437005955255553
- Universal Solvability for Robot Motion Planning on Graphs
Anubhav Dhar, Pranav Nyati, Tanishq Prasad, Ashlesha Hota, Sudeshna Kolay
https://arxiv.org/abs/2506.18755 https://mastoxiv.page/@arXiv_csCC_bot/114737342714568702
- Colorful Minors
Evangelos Protopapas, Dimitrios M. Thilikos, Sebastian Wiederrecht
https://arxiv.org/abs/2507.10467
- Learning fermionic linear optics with Heisenberg scaling and physical operations
Aria Christensen, Andrew Zhao
https://arxiv.org/abs/2602.05058
toXiv_bot_toot
Crosslisted article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/3]:
- Fraud detection in credit card transactions using Quantum-Assisted Restricted Boltzmann Machines
Jo\~ao Marcos Cavalcanti de Albuquerque Neto, Gustavo Castro do Amaral, Guilherme Penello Tempor\~ao
https://arxiv.org/abs/2512.17660 https://mastoxiv.page/@arXiv_quantph_bot/115762703945731580
- Vidarc: Embodied Video Diffusion Model for Closed-loop Control
Feng, Xiang, Mao, Tan, Zhang, Huang, Zheng, Liu, Su, Zhu
https://arxiv.org/abs/2512.17661 https://mastoxiv.page/@arXiv_csRO_bot/115762650859932523
- Imputation Uncertainty in Interpretable Machine Learning Methods
Pegah Golchian, Marvin N. Wright
https://arxiv.org/abs/2512.17689 https://mastoxiv.page/@arXiv_statML_bot/115762577479255577
- Revisiting the Broken Symmetry Phase of Solid Hydrogen: A Neural Network Variational Monte Carlo ...
Shengdu Chai, Chen Lin, Xinyang Dong, Yuqiang Li, Wanli Ouyang, Lei Wang, X. C. Xie
https://arxiv.org/abs/2512.17703 https://mastoxiv.page/@arXiv_condmatstrel_bot/115762481116668454
- Breast Cancer Neoadjuvant Chemotherapy Treatment Response Prediction Using Aligned Longitudinal M...
Rahul Ravi, Ruizhe Li, Tarek Abdelfatah, Stephen Chan, Xin Chen
https://arxiv.org/abs/2512.17759 https://mastoxiv.page/@arXiv_eessIV_bot/115762481771898369
- MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Im...
Roy, Kirchhoff, Ulrich, Rokuss, Wald, Isensee, Maier-Hein
https://arxiv.org/abs/2512.17774 https://mastoxiv.page/@arXiv_eessIV_bot/115762492258209812
- Domain-Aware Quantum Circuit for QML
Gurinder Singh, Thaddeus Pellegrini, Kenneth M. Merz, Jr
https://arxiv.org/abs/2512.17800 https://mastoxiv.page/@arXiv_quantph_bot/115762723607200478
- Visually Prompted Benchmarks Are Surprisingly Fragile
Feng, Lian, Dunlap, Shu, Wang, Wang, Darrell, Suhr, Kanazawa
https://arxiv.org/abs/2512.17875 https://mastoxiv.page/@arXiv_csCV_bot/115762781936221554
- Learning vertical coordinates via automatic differentiation of a dynamical core
Tim Whittaker, Seth Taylor, Elsa Cardoso-Bihlo, Alejandro Di Luca, Alex Bihlo
https://arxiv.org/abs/2512.17877 https://mastoxiv.page/@arXiv_physicsaoph_bot/115762405092703069
- RadarGen: Automotive Radar Point Cloud Generation from Cameras
Tomer Borreda, Fangqiang Ding, Sanja Fidler, Shengyu Huang, Or Litany
https://arxiv.org/abs/2512.17897 https://mastoxiv.page/@arXiv_csCV_bot/115762783246540528
- Distributionally Robust Imitation Learning: Layered Control Architecture for Certifiable Autonomy
Gahlawat, Aboudonia, Banik, Hovakimyan, Matni, Ames, Zardini, Speranzon
https://arxiv.org/abs/2512.17899 https://mastoxiv.page/@arXiv_eessSY_bot/115762532257741954
- Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting
Ananta R. Bhattarai, Helge Rhodin
https://arxiv.org/abs/2512.17908 https://mastoxiv.page/@arXiv_csCV_bot/115762785868778349
toXiv_bot_toot
You Only Train Once: Differentiable Subset Selection for Omics Data
Daphn\'e Chopard, Jorge da Silva Gon\c{c}alves, Irene Cannistraci, Thomas M. Sutter, Julia E. Vogt
https://arxiv.org/abs/2512.17678 https://arxiv.org/pdf/2512.17678 https://arxiv.org/html/2512.17678
arXiv:2512.17678v1 Announce Type: new
Abstract: Selecting compact and informative gene subsets from single-cell transcriptomic data is essential for biomarker discovery, improving interpretability, and cost-effective profiling. However, most existing feature selection approaches either operate as multi-stage pipelines or rely on post hoc feature attribution, making selection and prediction weakly coupled. In this work, we present YOTO (you only train once), an end-to-end framework that jointly identifies discrete gene subsets and performs prediction within a single differentiable architecture. In our model, the prediction task directly guides which genes are selected, while the learned subsets, in turn, shape the predictive representation. This closed feedback loop enables the model to iteratively refine both what it selects and how it predicts during training. Unlike existing approaches, YOTO enforces sparsity so that only the selected genes contribute to inference, eliminating the need to train additional downstream classifiers. Through a multi-task learning design, the model learns shared representations across related objectives, allowing partially labeled datasets to inform one another, and discovering gene subsets that generalize across tasks without additional training steps. We evaluate YOTO on two representative single-cell RNA-seq datasets, showing that it consistently outperforms state-of-the-art baselines. These results demonstrate that sparse, end-to-end, multi-task gene subset selection improves predictive performance and yields compact and meaningful gene subsets, advancing biomarker discovery and single-cell analysis.
toXiv_bot_toot