Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@arXiv_csDS_bot@mastoxiv.page
2026-02-10 10:45:35

Incremental (k, z)-Clustering on Graphs
Emilio Cruciani, Sebastian Forster, Antonis Skarlatos
arxiv.org/abs/2602.08542 arxiv.org/pdf/2602.08542 arxiv.org/html/2602.08542
arXiv:2602.08542v1 Announce Type: new
Abstract: Given a weighted undirected graph, a number of clusters $k$, and an exponent $z$, the goal in the $(k, z)$-clustering problem on graphs is to select $k$ vertices as centers that minimize the sum of the distances raised to the power $z$ of each vertex to its closest center. In the dynamic setting, the graph is subject to adversarial edge updates, and the goal is to maintain explicitly an exact $(k, z)$-clustering solution in the induced shortest-path metric.
While efficient dynamic $k$-center approximation algorithms on graphs exist [Cruciani et al. SODA 2024], to the best of our knowledge, no prior work provides similar results for the dynamic $(k,z)$-clustering problem. As the main result of this paper, we develop a randomized incremental $(k, z)$-clustering algorithm that maintains with high probability a constant-factor approximation in a graph undergoing edge insertions with a total update time of $\tilde O(k m^{1 o(1)} k^{1 \frac{1}{\lambda}} m)$, where $\lambda \geq 1$ is an arbitrary fixed constant. Our incremental algorithm consists of two stages. In the first stage, we maintain a constant-factor bicriteria approximate solution of size $\tilde{O}(k)$ with a total update time of $m^{1 o(1)}$ over all adversarial edge insertions. This first stage is an intricate adaptation of the bicriteria approximation algorithm by Mettu and Plaxton [Machine Learning 2004] to incremental graphs. One of our key technical results is that the radii in their algorithm can be assumed to be non-decreasing while the approximation ratio remains constant, a property that may be of independent interest.
In the second stage, we maintain a constant-factor approximate $(k,z)$-clustering solution on a dynamic weighted instance induced by the bicriteria approximate solution. For this subproblem, we employ a dynamic spanner algorithm together with a static $(k,z)$-clustering algorithm.
toXiv_bot_toot

@arXiv_csCV_bot@mastoxiv.page
2025-12-12 14:07:15

Replaced article(s) found for cs.CV. arxiv.org/list/cs.CV/new
[1/5]:
- Dual Cluster Contrastive learning for Object Re-Identification
Hantao Yao, Changsheng Xu

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 11:50:31

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[2/3]:
- Sharp Structure-Agnostic Lower Bounds for General Functional Estimation
Jikai Jin, Vasilis Syrgkanis
arxiv.org/abs/2512.17341 mastoxiv.page/@arXiv_statML_bo
- Timely Information Updating for Mobile Devices Without and With ML Advice
Yu-Pin Hsu, Yi-Hsuan Tseng
arxiv.org/abs/2512.17381 mastoxiv.page/@arXiv_csNI_bot/
- SWE-Bench : A Framework for the Scalable Generation of Software Engineering Benchmarks from Open...
Wang, Ramalho, Celestino, Pham, Liu, Sinha, Portillo, Osunwa, Maduekwe
arxiv.org/abs/2512.17419 mastoxiv.page/@arXiv_csSE_bot/
- Perfect reconstruction of sparse signals using nonconvexity control and one-step RSB message passing
Xiaosi Gu, Ayaka Sakata, Tomoyuki Obuchi
arxiv.org/abs/2512.17426 mastoxiv.page/@arXiv_statML_bo
- MULTIAQUA: A multimodal maritime dataset and robust training strategies for multimodal semantic s...
Jon Muhovi\v{c}, Janez Per\v{s}
arxiv.org/abs/2512.17450 mastoxiv.page/@arXiv_csCV_bot/
- When Data Quality Issues Collide: A Large-Scale Empirical Study of Co-Occurring Data Quality Issu...
Emmanuel Charleson Dapaah, Jens Grabowski
arxiv.org/abs/2512.17460 mastoxiv.page/@arXiv_csSE_bot/
- Behavioural Effects of Agentic Messaging: A Case Study on a Financial Service Application
Olivier Jeunen, Schaun Wheeler
arxiv.org/abs/2512.17462 mastoxiv.page/@arXiv_csIR_bot/
- Linear Attention for Joint Power Optimization and User-Centric Clustering in Cell-Free Networks
Irched Chafaa, Giacomo Bacci, Luca Sanguinetti
arxiv.org/abs/2512.17466 mastoxiv.page/@arXiv_eessSY_bo
- Translating the Rashomon Effect to Sequential Decision-Making Tasks
Dennis Gross, J{\o}rn Eirik Betten, Helge Spieker
arxiv.org/abs/2512.17470 mastoxiv.page/@arXiv_csAI_bot/
- Alternating Direction Method of Multipliers for Nonlinear Matrix Decompositions
Atharva Awari, Nicolas Gillis, Arnaud Vandaele
arxiv.org/abs/2512.17473 mastoxiv.page/@arXiv_eessSP_bo
- TwinSegNet: A Digital Twin-Enabled Federated Learning Framework for Brain Tumor Analysis
Almustapha A. Wakili, Adamu Hussaini, Abubakar A. Musa, Woosub Jung, Wei Yu
arxiv.org/abs/2512.17488 mastoxiv.page/@arXiv_csCV_bot/
- Resource-efficient medical image classification for edge devices
Mahsa Lavaei, Zahra Abadi, Salar Beigzad, Alireza Maleki
arxiv.org/abs/2512.17515 mastoxiv.page/@arXiv_eessIV_bo
- PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning i...
Brussee, Valkema, Weijer, Doeleman, Schrader, Kers
arxiv.org/abs/2512.17517 mastoxiv.page/@arXiv_csCV_bot/
- HydroGym: A Reinforcement Learning Platform for Fluid Dynamics
Christian Lagemann, et al.
arxiv.org/abs/2512.17534 mastoxiv.page/@arXiv_physicsfl
- When De-noising Hurts: A Systematic Study of Speech Enhancement Effects on Modern Medical ASR Sys...
Chondhekar, Murukuri, Vasani, Goyal, Badami, Rana, SN, Pandia, Katiyar, Jagadeesh, Gulati
arxiv.org/abs/2512.17562 mastoxiv.page/@arXiv_csSD_bot/
- Enabling Disaggregated Multi-Stage MLLM Inference via GPU-Internal Scheduling and Resource Sharing
Lingxiao Zhao, Haoran Zhou, Yuezhi Che, Dazhao Cheng
arxiv.org/abs/2512.17574 mastoxiv.page/@arXiv_csDC_bot/
- SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation i...
N. A. Adarsh Pritam, Jeba Shiney O, Sanyam Jain
arxiv.org/abs/2512.17585 mastoxiv.page/@arXiv_eessIV_bo
- MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection an...
Tosin Ige, Christopher Kiekintveld, Aritran Piplai, Asif Rahman, Olukunle Kolade, Sasidhar Kunapuli
arxiv.org/abs/2512.17594 mastoxiv.page/@arXiv_csCR_bot/
- Confidence-Credibility Aware Weighted Ensembles of Small LLMs Outperform Large LLMs in Emotion De...
Menna Elgabry, Ali Hamdi
arxiv.org/abs/2512.17630 mastoxiv.page/@arXiv_csCL_bot/
- Generative Multi-Objective Bayesian Optimization with Scalable Batch Evaluations for Sample-Effic...
Madhav R. Muthyala, Farshud Sorourifar, Tianhong Tan, You Peng, Joel A. Paulson
arxiv.org/abs/2512.17659 mastoxiv.page/@arXiv_statML_bo
toXiv_bot_toot

@arXiv_csDS_bot@mastoxiv.page
2026-02-10 21:08:46

Replaced article(s) found for cs.DS. arxiv.org/list/cs.DS/new
[1/1]:
- Fully Dynamic Adversarially Robust Correlation Clustering in Polylogarithmic Update Time
Vladimir Braverman, Prathamesh Dharangutte, Shreyas Pai, Vihan Shah, Chen Wang
arxiv.org/abs/2411.09979 mastoxiv.page/@arXiv_csDS_bot/
- A Simple and Combinatorial Approach to Proving Chernoff Bounds and Their Generalizations
William Kuszmaul
arxiv.org/abs/2501.03488 mastoxiv.page/@arXiv_csDS_bot/
- The Structural Complexity of Matrix-Vector Multiplication
Emile Anand, Jan van den Brand, Rose McCarty
arxiv.org/abs/2502.21240 mastoxiv.page/@arXiv_csDS_bot/
- Clustering under Constraints: Efficient Parameterized Approximation Schemes
Sujoy Bhore, Ameet Gadekar, Tanmay Inamdar
arxiv.org/abs/2504.06980 mastoxiv.page/@arXiv_csDS_bot/
- Minimizing Envy and Maximizing Happiness in Graphical House Allocation
Anubhav Dhar, Ashlesha Hota, Palash Dey, Sudeshna Kolay
arxiv.org/abs/2505.00296 mastoxiv.page/@arXiv_csDS_bot/
- Fast and Simple Densest Subgraph with Predictions
Thai Bui, Luan Nguyen, Hoa T. Vu
arxiv.org/abs/2505.12600 mastoxiv.page/@arXiv_csDS_bot/
- Compressing Suffix Trees by Path Decompositions
Becker, Cenzato, Gagie, Kim, Koerkamp, Manzini, Prezza
arxiv.org/abs/2506.14734 mastoxiv.page/@arXiv_csDS_bot/
- Improved sampling algorithms and functional inequalities for non-log-concave distributions
Yuchen He, Zhehan Lei, Jianan Shao, Chihao Zhang
arxiv.org/abs/2507.11236 mastoxiv.page/@arXiv_csDS_bot/
- Deterministic Lower Bounds for $k$-Edge Connectivity in the Distributed Sketching Model
Peter Robinson, Ming Ming Tan
arxiv.org/abs/2507.11257 mastoxiv.page/@arXiv_csDS_bot/
- Optimally detecting uniformly-distributed $\ell_2$ heavy hitters in data streams
Santhoshini Velusamy, Huacheng Yu
arxiv.org/abs/2509.07286 mastoxiv.page/@arXiv_csDS_bot/
- Uncrossed Multiflows and Applications to Disjoint Paths
Chandra Chekuri, Guyslain Naves, Joseph Poremba, F. Bruce Shepherd
arxiv.org/abs/2511.00254 mastoxiv.page/@arXiv_csDS_bot/
- Dynamic Matroids: Base Packing and Covering
Tijn de Vos, Mara Grilnberger
arxiv.org/abs/2511.15460 mastoxiv.page/@arXiv_csDS_bot/
- Branch-width of connectivity functions is fixed-parameter tractable
Tuukka Korhonen, Sang-il Oum
arxiv.org/abs/2601.04756 mastoxiv.page/@arXiv_csDS_bot/
- CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas, Yihe Dong, Gautam Kamath, Jonathan Ullman
arxiv.org/abs/2006.06618
- The Ideal Membership Problem and Abelian Groups
Andrei A. Bulatov, Akbar Rafiey
arxiv.org/abs/2201.05218
- Bridging Classical and Quantum: Group-Theoretic Approach to Quantum Circuit Simulation
Daksh Shami
arxiv.org/abs/2407.19575 mastoxiv.page/@arXiv_quantph_b
- Young domination on Hamming rectangles
Janko Gravner, Matja\v{z} Krnc, Martin Milani\v{c}, Jean-Florent Raymond
arxiv.org/abs/2501.03788 mastoxiv.page/@arXiv_mathCO_bo
- On the Space Complexity of Online Convolution
Joel Daniel Andersson, Amir Yehudayoff
arxiv.org/abs/2505.00181 mastoxiv.page/@arXiv_csCC_bot/
- Universal Solvability for Robot Motion Planning on Graphs
Anubhav Dhar, Pranav Nyati, Tanishq Prasad, Ashlesha Hota, Sudeshna Kolay
arxiv.org/abs/2506.18755 mastoxiv.page/@arXiv_csCC_bot/
- Colorful Minors
Evangelos Protopapas, Dimitrios M. Thilikos, Sebastian Wiederrecht
arxiv.org/abs/2507.10467
- Learning fermionic linear optics with Heisenberg scaling and physical operations
Aria Christensen, Andrew Zhao
arxiv.org/abs/2602.05058
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 11:50:43

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[3/3]:
- Fraud detection in credit card transactions using Quantum-Assisted Restricted Boltzmann Machines
Jo\~ao Marcos Cavalcanti de Albuquerque Neto, Gustavo Castro do Amaral, Guilherme Penello Tempor\~ao
arxiv.org/abs/2512.17660 mastoxiv.page/@arXiv_quantph_b
- Vidarc: Embodied Video Diffusion Model for Closed-loop Control
Feng, Xiang, Mao, Tan, Zhang, Huang, Zheng, Liu, Su, Zhu
arxiv.org/abs/2512.17661 mastoxiv.page/@arXiv_csRO_bot/
- Imputation Uncertainty in Interpretable Machine Learning Methods
Pegah Golchian, Marvin N. Wright
arxiv.org/abs/2512.17689 mastoxiv.page/@arXiv_statML_bo
- Revisiting the Broken Symmetry Phase of Solid Hydrogen: A Neural Network Variational Monte Carlo ...
Shengdu Chai, Chen Lin, Xinyang Dong, Yuqiang Li, Wanli Ouyang, Lei Wang, X. C. Xie
arxiv.org/abs/2512.17703 mastoxiv.page/@arXiv_condmatst
- Breast Cancer Neoadjuvant Chemotherapy Treatment Response Prediction Using Aligned Longitudinal M...
Rahul Ravi, Ruizhe Li, Tarek Abdelfatah, Stephen Chan, Xin Chen
arxiv.org/abs/2512.17759 mastoxiv.page/@arXiv_eessIV_bo
- MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Im...
Roy, Kirchhoff, Ulrich, Rokuss, Wald, Isensee, Maier-Hein
arxiv.org/abs/2512.17774 mastoxiv.page/@arXiv_eessIV_bo
- Domain-Aware Quantum Circuit for QML
Gurinder Singh, Thaddeus Pellegrini, Kenneth M. Merz, Jr
arxiv.org/abs/2512.17800 mastoxiv.page/@arXiv_quantph_b
- Visually Prompted Benchmarks Are Surprisingly Fragile
Feng, Lian, Dunlap, Shu, Wang, Wang, Darrell, Suhr, Kanazawa
arxiv.org/abs/2512.17875 mastoxiv.page/@arXiv_csCV_bot/
- Learning vertical coordinates via automatic differentiation of a dynamical core
Tim Whittaker, Seth Taylor, Elsa Cardoso-Bihlo, Alejandro Di Luca, Alex Bihlo
arxiv.org/abs/2512.17877 mastoxiv.page/@arXiv_physicsao
- RadarGen: Automotive Radar Point Cloud Generation from Cameras
Tomer Borreda, Fangqiang Ding, Sanja Fidler, Shengyu Huang, Or Litany
arxiv.org/abs/2512.17897 mastoxiv.page/@arXiv_csCV_bot/
- Distributionally Robust Imitation Learning: Layered Control Architecture for Certifiable Autonomy
Gahlawat, Aboudonia, Banik, Hovakimyan, Matni, Ames, Zardini, Speranzon
arxiv.org/abs/2512.17899 mastoxiv.page/@arXiv_eessSY_bo
- Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting
Ananta R. Bhattarai, Helge Rhodin
arxiv.org/abs/2512.17908 mastoxiv.page/@arXiv_csCV_bot/
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:32:30

You Only Train Once: Differentiable Subset Selection for Omics Data
Daphn\'e Chopard, Jorge da Silva Gon\c{c}alves, Irene Cannistraci, Thomas M. Sutter, Julia E. Vogt
arxiv.org/abs/2512.17678 arxiv.org/pdf/2512.17678 arxiv.org/html/2512.17678
arXiv:2512.17678v1 Announce Type: new
Abstract: Selecting compact and informative gene subsets from single-cell transcriptomic data is essential for biomarker discovery, improving interpretability, and cost-effective profiling. However, most existing feature selection approaches either operate as multi-stage pipelines or rely on post hoc feature attribution, making selection and prediction weakly coupled. In this work, we present YOTO (you only train once), an end-to-end framework that jointly identifies discrete gene subsets and performs prediction within a single differentiable architecture. In our model, the prediction task directly guides which genes are selected, while the learned subsets, in turn, shape the predictive representation. This closed feedback loop enables the model to iteratively refine both what it selects and how it predicts during training. Unlike existing approaches, YOTO enforces sparsity so that only the selected genes contribute to inference, eliminating the need to train additional downstream classifiers. Through a multi-task learning design, the model learns shared representations across related objectives, allowing partially labeled datasets to inform one another, and discovering gene subsets that generalize across tasks without additional training steps. We evaluate YOTO on two representative single-cell RNA-seq datasets, showing that it consistently outperforms state-of-the-art baselines. These results demonstrate that sparse, end-to-end, multi-task gene subset selection improves predictive performance and yields compact and meaningful gene subsets, advancing biomarker discovery and single-cell analysis.
toXiv_bot_toot