Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_condmatmtrlsci_bot@mastoxiv.page
2025-10-14 08:01:46

Ensemble-Based Data Assimilation for Material Model Characterization in High-Velocity Impact
Rong Jin, Guangyao Wang, Xingsheng Sun
arxiv.org/abs/2510.09703

@arXiv_physicsdataan_bot@mastoxiv.page
2025-10-14 15:02:51

Crosslisted article(s) found for physics.data-an. arxiv.org/list/physics.data-an
[1/1]:
- Ensemble-Based Data Assimilation for Material Model Characterization in High-Velocity Impact
Rong Jin, Guangyao Wang, Xingsheng Sun

@arXiv_mathNA_bot@mastoxiv.page
2025-10-09 08:25:41

Structurally informed data assimilation in two dimensions
Tongtong Li, Anne Gelb, Yoonsang Lee
arxiv.org/abs/2510.06369 arxiv.org/pdf/2510.…

@arXiv_physicsfludyn_bot@mastoxiv.page
2025-10-02 09:08:00

On the joint observability of flow fields and particle properties from Lagrangian trajectories: evidence from neural data assimilation
Ke Zhou, Samuel J. Grauer
arxiv.org/abs/2510.00479

@arXiv_physicsgeoph_bot@mastoxiv.page
2025-10-10 08:42:19

Diffusion-Based Probabilistic Modeling for Hourly Streamflow Prediction and Assimilation
Wencong Yang, Haoyu Ji, Leo Lonzarich, Yalan Song, Chaopeng Shen
arxiv.org/abs/2510.08488

@arXiv_mathNA_bot@mastoxiv.page
2025-10-07 09:56:12

A discrete data assimilation algorithm for the reconstruction of Gray--Scott dynamics
Tsiry Avisoa Randrianasolo
arxiv.org/abs/2510.03972 a…

@arXiv_qbioNC_bot@mastoxiv.page
2025-12-10 08:33:11

State and Parameter Estimation for a Neural Model of Local Field Potentials
Daniele Avitabile, Gabriel J. Lord, Khadija Meddouni
arxiv.org/abs/2512.07842 arxiv.org/pdf/2512.07842 arxiv.org/html/2512.07842
arXiv:2512.07842v1 Announce Type: new
Abstract: The study of cortical dynamics during different states such as decision making, sleep and movement, is an important topic in Neuroscience. Modelling efforts aim to relate the neural rhythms present in cortical recordings to the underlying dynamics responsible for their emergence. We present an effort to characterize the neural activity from the cortex of a mouse during natural sleep, captured through local field potential measurements. Our approach relies on using a discretized Wilson--Cowan Amari neural field model for neural activity, along with a data assimilation method that allows the Bayesian joint estimation of the state and parameters. We demonstrate the feasibility of our approach on synthetic measurements before applying it to a dataset available in literature. Our findings suggest the potential of our approach to characterize the stimulus received by the cortex from other brain regions, while simultaneously inferring a state that aligns with the observed signal.
toXiv_bot_toot

@arXiv_mathST_bot@mastoxiv.page
2025-10-02 08:03:31

A Bayesian Characterization of Ensemble Kalman Updates
Frederic J. N. Jorgensen, Youssef M. Marzouk
arxiv.org/abs/2510.00158 arxiv.org/pdf/…

@arXiv_nlincd_bot@mastoxiv.page
2025-09-29 08:23:07

Model Training, Data Assimilation, and Forecast Experiments with a Hybrid Atmospheric Model that Incorporates Machine Learning
Dylan Elliott, Troy Arcomano, Istvan Szunyogh, Brian R. Hunt
arxiv.org/abs/2509.22465

@arXiv_mathNA_bot@mastoxiv.page
2025-09-23 09:41:50

Numerical Reconstruction of Coefficients in Elliptic Equations Using Continuous Data Assimilation
Peiran Zhang
arxiv.org/abs/2509.16954 arx…

@arXiv_physicscompph_bot@mastoxiv.page
2025-09-24 08:53:14

Physics-Informed Field Inversion for Sparse Data Assimilation
Levent Ugur (Georgia Institute of Technology), Beckett Y. Zhou (Georgia Institute of Technology)
arxiv.org/abs/2509.19160