Towards Efficient Data Structures for Approximate Search with Range Queries
Ladan Kian, Dariusz R. Kowalski
https://arxiv.org/abs/2602.06860 https://arxiv.org/pdf/2602.06860 https://arxiv.org/html/2602.06860
arXiv:2602.06860v1 Announce Type: new
Abstract: Range queries are simple and popular types of queries used in data retrieval. However, extracting exact and complete information using range queries is costly. As a remedy, some previous work proposed a faster principle, {\em approximate} search with range queries, also called single range cover (SRC) search. It can, however, produce some false positives. In this work we introduce a new SRC search structure, a $c$-DAG (Directed Acyclic Graph), which provably decreases the average number of false positives by logarithmic factor while keeping asymptotically same time and memory complexities as a classic tree structure. A $c$-DAG is a tunable augmentation of the 1D-Tree with denser overlapping branches ($c \geq 3$ children per node). We perform a competitive analysis of a $c$-DAG with respect to 1D-Tree and derive an additive constant time overhead and a multiplicative logarithmic improvement of the false positives ratio, on average. We also provide a generic framework to extend our results to empirical distributions of queries, and demonstrate its effectiveness for Gowalla dataset. Finally, we quantify and discuss security and privacy aspects of SRC search on $c$-DAG vs 1D-Tree, mainly mitigation of structural leakage, which makes $c$-DAG a good data structure candidate for deployment in privacy-preserving systems (e.g., searchable encryption) and multimedia retrieval.
toXiv_bot_toot
Hardness and Tractability of T_{h 1}-Free Edge Deletion
Ajinkya Gaikwad, Soumen Maity, Leeja R
https://arxiv.org/abs/2602.00644 https://arxiv.org/pdf/2602.00644 https://arxiv.org/html/2602.00644
arXiv:2602.00644v1 Announce Type: new
Abstract: We study the parameterized complexity of the T(h 1)-Free Edge Deletion problem. Given a graph G and integers k and h, the task is to delete at most k edges so that every connected component of the resulting graph has size at most h. The problem is NP-complete for every fixed h at least 3, while it is solvable in polynomial time for h at most 2.
Recent work showed strong hardness barriers: the problem is W[1]-hard when parameterized by the solution size together with the size of a feedback edge set, ruling out fixed-parameter tractability for many classical structural parameters. We significantly strengthen these negative results by proving W[1]-hardness when parameterized by the vertex deletion distance to a disjoint union of paths, the vertex deletion distance to a disjoint union of stars, or the twin cover number. These results unify and extend known hardness results for treewidth, pathwidth, and feedback vertex set, and show that several restrictive parameters, including treedepth, cluster vertex deletion number, and modular width, do not yield fixed-parameter tractability when h is unbounded.
On the positive side, we identify parameterizations that restore tractability. We show that the problem is fixed-parameter tractable when parameterized by cluster vertex deletion together with h, and also when parameterized by neighborhood diversity together with h via an integer linear programming formulation. We further present a fixed-parameter tractable bicriteria approximation algorithm parameterized by k. Finally, we show that the problem admits fixed-parameter tractable algorithms on split graphs and interval graphs, and we establish hardness for a directed generalization even on directed acyclic graphs.
toXiv_bot_toot