
Chaotic Bayesian Inference: Strange Attractors as Risk Models for Black Swan Events
We introduce a new risk modeling framework where chaotic attractors shape the geometry of Bayesian inference. By combining heavy-tailed priors with Lorenz and Rossler dynamics, the models naturally generate volatility clustering, fat tails, and extreme events. We compare two complementary approaches: Model A, which emphasizes geometric stability, and Model B, which highlights rare bursts using Fibonacci diagnostics. Together, they provide a dual perspective for systemic risk analysis, linking B…