2025-08-27 10:34:03
GRADSTOP: Early Stopping of Gradient Descent via Posterior Sampling
Arash Jamshidi, Lauri Sepp\"al\"ainen, Katsiaryna Haitsiukevich, Hoang Phuc Hau Luu, Anton Bj\"orklund, Kai Puolam\"aki
https://arxiv.org/abs/2508.19028
GRADSTOP: Early Stopping of Gradient Descent via Posterior Sampling
Arash Jamshidi, Lauri Sepp\"al\"ainen, Katsiaryna Haitsiukevich, Hoang Phuc Hau Luu, Anton Bj\"orklund, Kai Puolam\"aki
https://arxiv.org/abs/2508.19028
Adaptive generative moment matching networks for improved learning of dependence structures
Marius Hofert, Gan Yao
https://arxiv.org/abs/2508.21531 https://
Optimal Stopping for Sequential Bayesian Experimental Design
Chen Cheng, Xun Huan
https://arxiv.org/abs/2509.21734 https://arxiv.org/pdf/2509.21734
The Hidden Cost of Defaults in Recommender System Evaluation
Hannah Berlin, Robin Svahn, Alan Said
https://arxiv.org/abs/2508.21180 https://arxiv.org/pdf/2…
Early Stopping Chain-of-thoughts in Large Language Models
Minjia Mao, Bowen Yin, Yu Zhu, Xiao Fang
https://arxiv.org/abs/2509.14004 https://arxiv.org/pdf/2…
Optimal Stopping in Latent Diffusion Models
Yu-Han Wu, Quentin Berthet, G\'erard Biau, Claire Boyer, Romuald Elie, Pierre Marion
https://arxiv.org/abs/2510.08409 https://
An information metric for comparing and assessing informative interim decisions in sequential clinical trials
G. Caruso, W. F. Rosenberger, P. Mozgunov, N. Flournoy
https://arxiv.org/abs/2509.04904
Is Repeated Bayesian Interim Analysis Consequence-Free?
Suyu Liu, Beibei Guo, Laura Thompson, Lei Nie, Ying Yuan
https://arxiv.org/abs/2508.07403 https://a…