Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@arXiv_statME_bot@mastoxiv.page
2025-10-14 09:25:28

Efficient Prior Sensitivity and Tipping-point Analysis for Medical Research: Revisiting Sampling Importance Resampling
Tomohiro Ohigashi, Shonosuke Sugasawa
arxiv.org/abs/2510.10034

@arXiv_quantph_bot@mastoxiv.page
2025-10-10 11:15:39

Wavefunction Flows: Efficient Quantum Simulation of Continuous Flow Models
David Layden, Ryan Sweke, Vojt\v{e}ch Havl\'i\v{c}ek, Anirban Chowdhury, Kirill Neklyudov
arxiv.org/abs/2510.08462

@arXiv_qfinMF_bot@mastoxiv.page
2025-10-13 08:25:20

Lifted Heston Model: Efficient Monte Carlo Simulation with Large Time Steps
Nicola F. Zaugg, Lech A. Grzelak
arxiv.org/abs/2510.08805 arxiv…

@arXiv_csCR_bot@mastoxiv.page
2025-10-09 09:49:21

Pseudo-MDPs: A Novel Framework for Efficiently Optimizing Last Revealer Seed Manipulations in Blockchains
Maxime Reynouard
arxiv.org/abs/2510.07080

@markhburton@mstdn.social
2025-10-06 07:48:14

Burning wood indoors could cause damage in a similar way to cigarette smoke.
manchestereveningnews.co.uk/ne

@arXiv_quantph_bot@mastoxiv.page
2025-10-09 10:49:21

Efficient tensor-network simulations of weakly-measured quantum circuits
Darren Pereira, Leonardo Banchi
arxiv.org/abs/2510.07211 arxiv.org…

@arXiv_csLG_bot@mastoxiv.page
2025-09-30 14:45:21

GLASS Flows: Transition Sampling for Alignment of Flow and Diffusion Models
Peter Holderrieth, Uriel Singer, Tommi Jaakkola, Ricky T. Q. Chen, Yaron Lipman, Brian Karrer
arxiv.org/abs/2509.25170

@arXiv_quantph_bot@mastoxiv.page
2025-10-01 10:25:17

Computable measures of non-Markovianity for Gaussian free fermion systems
Giuliano Chiriac\`o
arxiv.org/abs/2509.25953 arxiv.org/pdf/2509.2…

@markhburton@mstdn.social
2025-12-02 09:22:20

#Jeavons
Don’t Forget to Ask: What Happens to the Savings? - resilience
resilience.org/stories/2025-11

@arXiv_csLG_bot@mastoxiv.page
2025-10-06 10:27:29

To Distill or Decide? Understanding the Algorithmic Trade-off in Partially Observable Reinforcement Learning
Yuda Song, Dhruv Rohatgi, Aarti Singh, J. Andrew Bagnell
arxiv.org/abs/2510.03207