
FTTE: Federated Learning on Resource-Constrained Devices
Federated learning (FL) enables collaborative model training across distributed devices while preserving data privacy, but deployment on resource-constrained edge nodes remains challenging due to limited memory, energy, and communication bandwidth. Traditional synchronous and asynchronous FL approaches further suffer from straggler induced delays and slow convergence in heterogeneous, large scale networks. We present FTTE (Federated Tiny Training Engine),a novel semi-asynchronous FL framework t…