👀 Forgejo's "Roadmap for Federation" https://codeberg.org/forgejo-contrib/federation/src/branch/main/FederationRoadmap.md — still looks like a lot of work need to be done 🥲
FedUP: Efficient Pruning-based Federated Unlearning for Model Poisoning Attacks
Nicol\`o Romandini, Cristian Borcea, Rebecca Montanari, Luca Foschini
https://arxiv.org/abs/2508.13853
Reactive Semantics for User Interface Description Languages
Basile Pesin (Federation ENAC ISAE-SUPAERO ONERA, Universite de Toulouse, France), Celia Picard (Federation ENAC ISAE-SUPAERO ONERA, Universite de Toulouse, France), Cyril Allignol (Federation ENAC ISAE-SUPAERO ONERA, Universite de Toulouse, France)
https://arxiv.org/abs/2508.1361…
Communication-Efficient Federated Learning with Adaptive Number of Participants
Sergey Skorik, Vladislav Dorofeev, Gleb Molodtsov, Aram Avetisyan, Dmitry Bylinkin, Daniil Medyakov, Aleksandr Beznosikov
https://arxiv.org/abs/2508.13803
Personalized Subgraph Federated Learning with Sheaf Collaboration
Wenfei Liang, Yanan Zhao, Rui She, Yiming Li, Wee Peng Tay
https://arxiv.org/abs/2508.13642 https://
Trans-XFed: An Explainable Federated Learning for Supply Chain Credit Assessment
Jie Shi, Arno P. J. M. Siebes, Siamak Mehrkanoon
https://arxiv.org/abs/2508.13715 https://
Who to Trust? Aggregating Client Knowledge in Logit-Based Federated Learning
Viktor Kovalchuk, Nikita Kotelevskii, Maxim Panov, Samuel Horv\'ath, Martin Tak\'a\v{c}
https://arxiv.org/abs/2509.15147
Adaptive LoRA Experts Allocation and Selection for Federated Fine-Tuning
Lei Wang, Jieming Bian, Letian Zhang, Jie Xu
https://arxiv.org/abs/2509.15087 https://
Towards a Larger Model via One-Shot Federated Learning on Heterogeneous Client Models
Wenxuan Ye, Xueli An, Onur Ayan, Junfan Wang, Xueqiang Yan, Georg Carle
https://arxiv.org/abs/2508.13625