
2025-07-14 08:49:12
Computing Floating-Point Errors by Injecting Perturbations
Youshuai Tan, Zhanwei Zhang, Jinfu Chen, Zishuo Ding, Jifeng Xuan, Weiyi Shang
https://arxiv.org/abs/2507.08467
Computing Floating-Point Errors by Injecting Perturbations
Youshuai Tan, Zhanwei Zhang, Jinfu Chen, Zishuo Ding, Jifeng Xuan, Weiyi Shang
https://arxiv.org/abs/2507.08467
🏃🏻♀️ Why Is Japan Still Investing In Custom Floating Point Accelerators?
https://www.nextplatform.com/2025/09/04/why-is-japan-still-investing-in-custom-floating-point-accelerators/
Towards Verified Compilation of Floating-point Optimization in Scientific Computing Programs
Mohit Tekriwal, John Sarracino
https://arxiv.org/abs/2509.09019 https://
A 28nm Multiply-Accumulate ASIC Architecture for On-Chip Data Compression in MHz Frame Rate X-ray and Electron Pixel Detectors
Rami Rasheedi, Nicholas Contini, Mohamed Adel Gharib, Sebastian Strempfer, Senthil Gnanasekaran, Salma Abdelzaher, Tejas Guruswamy, Kazutomo Yoshii, Mike Hammer, Henry Shi, Yu-Sheng Chen, Lorenzo Rota, Dionisio Doering, Angelo Dragone, Tao Zhou, Antonino Miceli
A Large-Scale Study of Floating-Point Usage in Statically Typed Languages
Andrea Gilot, Tobias Wrigstad, Eva Darulova
https://arxiv.org/abs/2509.04936 https://
Extended Abstract: Partial-encapsulate and Its Support for Floating-point Operations in ACL2
Matt Kaufmann, J Strother Moore
https://arxiv.org/abs/2508.00015 https://
Adding complex numbers to expression template algorithmic differentiation tools
Max Sagebaum, Nicolas R. Gauger
https://arxiv.org/abs/2508.05371 https://ar…
from my link log —
Elementary functions NOT following the IEEE 754 floating-point standard.
http://www.hlsl.co.uk/blog/2020/1/29/ieee754-is-not-followed
saved 2025-02-11
Request-Only Optimization for Recommendation Systems
Liang Guo, Wei Li, Lucy Liao, Huihui Cheng, Rui Zhang, Yu Shi, Yueming Wang, Yanzun Huang, Keke Zhai, Pengchao Wang, Timothy Shi, Xuan Cao, Shengzhi Wang, Renqin Cai, Zhaojie Gong, Omkar Vichare, Rui Jian, Leon Gao, Shiyan Deng, Xingyu Liu, Xiong Zhang, Fu Li, Wenlei Xie, Bin Wen, Rui Li, Xing Liu, Jiaqi Zhai
Floating-Point Data Transformation for Lossless Compression
Samirasadat Jamalidinan, Kazem Cheshmi
https://arxiv.org/abs/2506.18062 https://
Numerical Errors in Quantitative System Analysis With Decision Diagrams
Sebastiaan Brand, Arend-Jan Quist, Richard M. K. van Dijk, Alfons Laarman
https://arxiv.org/abs/2508.02673
Theoretical Analysis of Relative Errors in Gradient Computations for Adversarial Attacks with CE Loss
Yunrui Yu, Hang Su, Cheng-zhong Xu, Zhizhong Su, Jun Zhu
https://arxiv.org/abs/2507.22428
What Every Computer Scientist Should Know About Floating-Point Arithmetic #floats
RAPTOR: Practical Numerical Profiling of Scientific Applications
Faveo Hoerold, Ivan R. Ivanov, Akash Dhruv, William S. Moses, Anshu Dubey, Mohamed Wahib, Jens Domke
https://arxiv.org/abs/2507.04647
Full Integer Arithmetic Online Training for Spiking Neural Networks
Ismael Gomez, Guangzhi Tang
https://arxiv.org/abs/2509.06636 https://arxiv.org/pdf/2509…
Jack Unit: An Area- and Energy-Efficient Multiply-Accumulate (MAC) Unit Supporting Diverse Data Formats
Seock-Hwan Noh, Sungju Kim, Seohyun Kim, Daehoon Kim, Jaeha Kung, Yeseong Kim
https://arxiv.org/abs/2507.04772
I read Bostrom's book SUPERINTELLIGENCE back when I worked at Google —
Blaise A— insisted that it go on the "AI" SF book club reading list
(as an aside: I started the book club; we were mostly reading, uh, cautionary stories)
SUPERINTELLIGENCE is garbage, & I said so: throw around big numbers until your moral calculus has a floating-point overflow & you can be convinced of obviously crazy things
(phrasing wasn't so clean at the time)
.…
Analysis of Floating-Point Matrix Multiplication Computed via Integer Arithmetic
Ahmad Abdelfattah, Jack Dongarra, Massimiliano Fasi, Mantas Mikaitis, Fran\c{c}oise Tisseur
https://arxiv.org/abs/2506.11277
Accurate Reduced Floating-Point Precision Implicit Monte Carlo
Simon Butson, Mathew Cleveland, Alex Long, Todd Palmer
https://arxiv.org/abs/2506.11962 http…
Invariant Generation for Floating-Point Programs via Constraint Solving
Xuran Cai, Liqian Chen, Hongfei Fu
https://arxiv.org/abs/2507.15017 https://…
LLM-Based Program Generation for Triggering Numerical Inconsistencies Across Compilers
Yutong Wang, Cindy Rubio-Gonz\'alez
https://arxiv.org/abs/2509.00256 https://
Back to Bits: Extending Shannon's communication performance framework to computing
Max Hawkins, Richard Vuduc
https://arxiv.org/abs/2508.05621 https://…
Improving Deep Learning Framework Testing with Model-Level Metamorphic Testing
Yanzhou Mu, Juan Zhai, Chunrong Fang, Xiang Chen, Zhixiang Cao, Peiran Yang, Kexin Zhao, An Guo, Zhenyu Chen
https://arxiv.org/abs/2507.04354
Accuracy of Mathematical Functions in Julia
Mantas Mikaitis, Tejaswa Rizyal
https://arxiv.org/abs/2509.05666 https://arxiv.org/pdf/2509.05666
Lattice Random Walk Discretisations of Stochastic Differential Equations
Samuel Duffield, Maxwell Aifer, Denis Melanson, Zach Belateche, Patrick J. Coles
https://arxiv.org/abs/2508.20883
from my link log —
Posit floating point numbers: thin triangles and other tricks.
http://marc-b-reynolds.github.io/math/2019/02/06/Posit1.html
saved 2025-06-18
STF: Shallow-Level Temporal Feedback to Enhance Spiking Transformers
Zeqi Zheng, Zizheng Zhu, Yingchao Yu, Yanchen Huang, Changze Lv, Junfeng Tang, Zhaofei Yu, Yaochu Jin
https://arxiv.org/abs/2508.00387
On Automating Proofs of Multiplier Adder Trees using the RTL Books
Mayank Manjrekar (Arm Inc.)
https://arxiv.org/abs/2507.19010 https://arxiv.org/pdf/2507.…
Fast and Scalable Mixed Precision Euclidean Distance Calculations Using GPU Tensor Cores
Brian Curless, Michael Gowanlock
https://arxiv.org/abs/2508.21230 https://
GDNSQ: Gradual Differentiable Noise Scale Quantization for Low-bit Neural Networks
Sergey Salishev, Ian Akhremchik
https://arxiv.org/abs/2508.14004 https://
DGEMM without FP64 Arithmetic -- using FP64 Emulation and FP8 Tensor Cores with Ozaki Scheme
Daichi Mukunoki
https://arxiv.org/abs/2508.00441 https://arxiv…
SETI@home: Data Acquisition and Front-End Processing
Eric J. Korpela (Space Sciences Laboratory, University of California, Berkeley), David P. Anderson (Space Sciences Laboratory, University of California, Berkeley), Jeff Cobb (Space Sciences Laboratory, University of California, Berkeley), Matt Lebofsky (Space Sciences Laboratory, University of California, Berkeley), Wei Liu (Space Sciences Laboratory, University of California, Berkeley), Dan Werthimer (Space Sciences Laboratory, Univ…
Efficient vectorized evaluation of Gaussian AO integrals on modern central processing units
Andrey Asadchev, Edward F. Valeev
https://arxiv.org/abs/2506.12501
AR-LIF: Adaptive reset leaky-integrate and fire neuron for spiking neural networks
Zeyu Huang, Wei Meng, Quan Liu, Kun Chen, Li Ma
https://arxiv.org/abs/2507.20746 https://
Pole vaulter straight up and vertical after making it over the cross bar
#photo #photography #sports #track
Permutation-Avoiding FFT-Based Convolution
Nicolas Venkovic, Hartwig Anzt
https://arxiv.org/abs/2506.12718 https://arxiv.org/pdf/2506…