Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_csSE_bot@mastoxiv.page
2025-10-14 11:23:48

Detection of Performance Changes in MooBench Results Using Nyrki\"o on GitHub Actions
Shinhyung Yang, David Georg Reichelt, Henrik Ingo, Wilhelm Hasselbring
arxiv.org/abs/2510.11310

@arXiv_csLG_bot@mastoxiv.page
2025-10-13 10:40:40

Large Language Model Prompt Datasets: An In-depth Analysis and Insights
Yuanming Zhang, Yan Lin, Arijit Khan, Huaiyu Wan
arxiv.org/abs/2510.09316

@arXiv_csSE_bot@mastoxiv.page
2025-10-13 09:19:30

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data
Mohammad Baqar
arxiv.org/abs/2510.08667

@arXiv_econGN_bot@mastoxiv.page
2025-10-14 07:45:32

AI-assisted Programming May Decrease the Productivity of Experienced Developers by Increasing Maintenance Burden
Feiyang (Amber), Xu, Poonacha K. Medappa, Murat M. Tunc, Martijn Vroegindeweij, Jan C. Fransoo
arxiv.org/abs/2510.10165

@arXiv_csSE_bot@mastoxiv.page
2025-10-13 09:49:20

Saving SWE-Bench: A Benchmark Mutation Approach for Realistic Agent Evaluation
Spandan Garg, Ben Steenhoek, Yufan Huang
arxiv.org/abs/2510.08996

@arXiv_qbioNC_bot@mastoxiv.page
2025-12-11 08:29:01

NeuroSketch: An Effective Framework for Neural Decoding via Systematic Architectural Optimization
Gaorui Zhang, Zhizhang Yuan, Jialan Yang, Junru Chen, Li Meng, Yang Yang
arxiv.org/abs/2512.09524 arxiv.org/pdf/2512.09524 arxiv.org/html/2512.09524
arXiv:2512.09524v1 Announce Type: new
Abstract: Neural decoding, a critical component of Brain-Computer Interface (BCI), has recently attracted increasing research interest. Previous research has focused on leveraging signal processing and deep learning methods to enhance neural decoding performance. However, the in-depth exploration of model architectures remains underexplored, despite its proven effectiveness in other tasks such as energy forecasting and image classification. In this study, we propose NeuroSketch, an effective framework for neural decoding via systematic architecture optimization. Starting with the basic architecture study, we find that CNN-2D outperforms other architectures in neural decoding tasks and explore its effectiveness from temporal and spatial perspectives. Building on this, we optimize the architecture from macro- to micro-level, achieving improvements in performance at each step. The exploration process and model validations take over 5,000 experiments spanning three distinct modalities (visual, auditory, and speech), three types of brain signals (EEG, SEEG, and ECoG), and eight diverse decoding tasks. Experimental results indicate that NeuroSketch achieves state-of-the-art (SOTA) performance across all evaluated datasets, positioning it as a powerful tool for neural decoding. Our code and scripts are available at github.com/Galaxy-Dawn/NeuroSk.
toXiv_bot_toot

@arXiv_csCR_bot@mastoxiv.page
2025-09-26 07:41:31

Can You Trust Your Copilot? A Privacy Scorecard for AI Coding Assistants
Amir AL-Maamari
arxiv.org/abs/2509.20388 arxiv.org/pdf/2509.20388

@arXiv_csSE_bot@mastoxiv.page
2025-10-08 08:57:39

Who Do You Think You Are? Creating RSE Personas from GitHub Interactions
Felicity Anderson, Julien Sindt, Neil Chue Hong
arxiv.org/abs/2510.05390

@arXiv_astrophIM_bot@mastoxiv.page
2025-09-30 09:39:51

Cryogenic Materials Repository: A Public Resource and New Measurements for Cryogenic Research Applications
Henry E. Nachman (Department of Physics, The University of Texas at Austin, Weinberg Institute for Theoretical Physics, Texas Center for Cosmology and Astroparticle Physics, Austin, TX, USA), Oorie Desai (Department of Physics, The University of Texas at Austin, Weinberg Institute for Theoretical Physics, Texas Center for Cosmology and Astroparticle Physics, Austin, TX, USA), Nich…

@arXiv_csCY_bot@mastoxiv.page
2025-09-23 10:36:21

Patterns in the Transition From Founder-Leadership to Community Governance of Open Source
Mobina Noori, Mahasweta Chakraborti, Amy X Zhang, Seth Frey
arxiv.org/abs/2509.16295

@arXiv_csAR_bot@mastoxiv.page
2025-09-26 07:30:41

Pedagogically Motivated and Composable Open-Source RISC-V Processors for Computer Science Education
Ian McDougall, Harish Batchu, Michael Davies, Karthikeyan Sankaralingam
arxiv.org/abs/2509.20514

@arXiv_csAI_bot@mastoxiv.page
2025-09-17 12:24:44

Crosslisted article(s) found for cs.AI. arxiv.org/list/cs.AI/new
[3/7]:
- Understanding Prompt Management in GitHub Repositories: A Call for Best Practices
Hao Li, Hicham Masri, Filipe R. Cogo, Abdul Ali Bangash, Bram Adams, Ahmed E. Hassan

@arXiv_csSE_bot@mastoxiv.page
2025-10-08 09:11:39

An Empirical Study of Security-Policy Related Issues in Open Source Projects
Rintaro Kanaji, Brittany Reid, Yutaro Kashiwa, Raula Gaikovina Kula, Hajimu Iida
arxiv.org/abs/2510.05604

@arXiv_csLG_bot@mastoxiv.page
2025-09-26 10:31:31

humancompatible.train: Implementing Optimization Algorithms for Stochastically-Constrained Stochastic Optimization Problems
Andrii Kliachkin, Jana Lep\v{s}ov\'a, Gilles Bareilles, Jakub Mare\v{c}ek
arxiv.org/abs/2509.21254

@arXiv_eessAS_bot@mastoxiv.page
2025-09-29 09:17:38

AUDDT: Audio Unified Deepfake Detection Benchmark Toolkit
Yi Zhu, Heitor R. Guimar\~aes, Arthur Pimentel, Tiago Falk
arxiv.org/abs/2509.21597

@arXiv_csSE_bot@mastoxiv.page
2025-10-07 11:29:12

RevMine: An LLM-Assisted Tool for Code Review Mining and Analysis Across Git Platforms
Samah Kansab, Francis Bordeleau, Ali Tizghadam
arxiv.org/abs/2510.04796

@arXiv_csSE_bot@mastoxiv.page
2025-10-01 10:43:07

Red Teaming Program Repair Agents: When Correct Patches can Hide Vulnerabilities
Simin Chen, Yixin He, Suman Jana, Baishakhi Ray
arxiv.org/abs/2509.25894

@arXiv_csSE_bot@mastoxiv.page
2025-09-25 10:04:02

Developer Productivity With and Without GitHub Copilot: A Longitudinal Mixed-Methods Case Study
Viktoria Stray, Elias Goldmann Brandtz{\ae}g, Viggo Tellefsen Wivestad, Astri Barbala, Nils Brede Moe
arxiv.org/abs/2509.20353

@arXiv_csSE_bot@mastoxiv.page
2025-10-02 10:36:51

CodeGenLink: A Tool to Find the Likely Origin and License of Automatically Generated Code
Daniele Bifolco, Guido Annicchiarico, Pierluigi Barbiero, Massimiliano Di Penta, Fiorella Zampetti
arxiv.org/abs/2510.01077

@arXiv_csSE_bot@mastoxiv.page
2025-10-02 10:38:41

When Shared Worlds Break: Demystifying Defects in Multi-User Extended Reality Software Systems
Shuqing Li, Chenran Zhang, Binchang Li, Cuiyun Gao, Michael R. Lyu
arxiv.org/abs/2510.01182

@arXiv_csSE_bot@mastoxiv.page
2025-09-25 09:13:02

Demystifying the Evolution of Neural Networks with BOM Analysis: Insights from a Large-Scale Study of 55,997 GitHub Repositories
Xiaoning Ren, Yuhang Ye, Xiongfei Wu, Yueming Wu, Yinxing Xue
arxiv.org/abs/2509.20010

@arXiv_csSE_bot@mastoxiv.page
2025-09-19 09:46:31

On the Use of Agentic Coding: An Empirical Study of Pull Requests on GitHub
Miku Watanabe, Hao Li, Yutaro Kashiwa, Brittany Reid, Hajimu Iida, Ahmed E. Hassan
arxiv.org/abs/2509.14745

@arXiv_csSE_bot@mastoxiv.page
2025-09-18 09:09:41

GitHub's Copilot Code Review: Can AI Spot Security Flaws Before You Commit?
Amena Amro, Manar H. Alalfi
arxiv.org/abs/2509.13650 arxiv.…

@arXiv_csSE_bot@mastoxiv.page
2025-09-15 08:32:11

From Hugging Face to GitHub: Tracing License Drift in the Open-Source AI Ecosystem
James Jewitt, Hao Li, Bram Adams, Gopi Krishnan Rajbahadur, Ahmed E. Hassan
arxiv.org/abs/2509.09873