
A Gradient Guided Diffusion Framework for Chance Constrained Programming
Chance constrained programming (CCP) is a powerful framework for addressing optimization problems under uncertainty. In this paper, we introduce a novel Gradient-Guided Diffusion-based Optimization framework, termed GGDOpt, which tackles CCP through three key innovations. First, GGDOpt accommodates a broad class of CCP problems without requiring the knowledge of the exact distribution of uncertainty-relying solely on a set of samples. Second, to address the nonconvexity of the chance constraint…