Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 11:35:58

Nonlinearly Preconditioned Gradient Methods: Momentum and Stochastic Analysis
Konstantinos Oikonomidis, Jan Quan, Panagiotis Patrinos
arxiv.org/abs/2510.11312

@arXiv_statML_bot@mastoxiv.page
2025-10-15 09:49:02

Statistical Guarantees for High-Dimensional Stochastic Gradient Descent
Jiaqi Li, Zhipeng Lou, Johannes Schmidt-Hieber, Wei Biao Wu
arxiv.org/abs/2510.12013

@arXiv_mathNA_bot@mastoxiv.page
2025-10-14 10:54:08

Forward and backward error bounds for a mixed precision preconditioned conjugate gradient algorithm
Thomas Bake, Erin Carson, Yuxin Ma
arxiv.org/abs/2510.11379

@arXiv_mathAP_bot@mastoxiv.page
2025-10-14 10:33:18

Optimal gradient estimates for conductivity problems with imperfect low-conductivity interfaces
Hongjie Dong, Haigang Li, Yan Zhao
arxiv.org/abs/2510.10615

@arXiv_csCV_bot@mastoxiv.page
2025-09-15 09:59:21

Grad-CL: Source Free Domain Adaptation with Gradient Guided Feature Disalignment
Rini Smita Thakur, Rajeev Ranjan Dwivedi, Vinod K Kurmi
arxiv.org/abs/2509.10134

@arXiv_hepph_bot@mastoxiv.page
2025-10-15 09:58:12

Gradient-flowed operator product expansion without IR renormalons
Martin Beneke (TU Munich), Hiromasa Takaura (Kyoto University)
arxiv.org/abs/2510.12193

@arXiv_condmatstrel_bot@mastoxiv.page
2025-09-15 09:08:51

Gradient-based search of quantum phases: discovering unconventional fractional Chern insulators
Andr\'e Grossi Fonseca, Eric Wang, Sachin Vaidya, Patrick J. Ledwith, Ashvin Vishwanath, Marin Solja\v{c}i\'c
arxiv.org/abs/2509.10438

@arXiv_csCL_bot@mastoxiv.page
2025-10-13 10:39:20

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models
Chengyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu
arxiv.org/abs/2510.09541

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 11:44:38

Adaptive Conditional Gradient Descent
Abbas Khademi, Antonio Silveti-Falls
arxiv.org/abs/2510.11440 arxiv.org/pdf/2510.11440

@arXiv_mathSG_bot@mastoxiv.page
2025-10-14 08:14:58

An Invitation to Obstruction Bundle Gluing Through Morse Flow Lines
Ipsita Datta, Yuan Yao
arxiv.org/abs/2510.10393 arxiv.org/pdf/2510.1039…

@arXiv_csLG_bot@mastoxiv.page
2025-09-11 10:10:33

Modified Loss of Momentum Gradient Descent: Fine-Grained Analysis
Matias D. Cattaneo, Boris Shigida
arxiv.org/abs/2509.08483 arxiv.org/pdf/…

@arXiv_mathOC_bot@mastoxiv.page
2025-10-15 10:19:31

Temporal Variabilities Limit Convergence Rates in Gradient-Based Online Optimization
Bryan Van Scoy, Gianluca Bianchin
arxiv.org/abs/2510.12512

@arXiv_mathAP_bot@mastoxiv.page
2025-10-15 09:54:41

Liouville results for $(p,q)$-Laplacian elliptic equations with source terms involving gradient nonlinearities
Mousomi Bhakta, Anup Biswas, Roberta Filippucci
arxiv.org/abs/2510.12486

@arXiv_quantph_bot@mastoxiv.page
2025-10-13 09:24:10

Statistical Benchmarking of Optimization Methods for Variational Quantum Eigensolver under Quantum Noise
Silvie Ill\'esov\'a, Tom\'a\v{s} Bezd\v{e}k, Vojt\v{e}ch Nov\'ak, Bruno Senjean, Martin Beseda
arxiv.org/abs/2510.08727

@arXiv_statME_bot@mastoxiv.page
2025-10-13 09:25:10

Reliability Sensitivity with Response Gradient
Siu-Kui Au, Zi-Jun Cao
arxiv.org/abs/2510.09315 arxiv.org/pdf/2510.09315

@Techmeme@techhub.social
2025-09-29 14:05:45

Google rolls out its new gradient "G" icon company-wide, saying it "now represents all of Google ... and visually reflects our evolution in the AI era" (Abner Li/9to5Google)
9to5google.com/2025/09/29/goog

@arXiv_csIR_bot@mastoxiv.page
2025-10-15 09:34:12

Simple Projection Variants Improve ColBERT Performance
Benjamin Clavi\'e, Sean Lee, Rikiya Takehi, Aamir Shakir, Makoto P. Kato
arxiv.org/abs/2510.12327

@arXiv_eessSP_bot@mastoxiv.page
2025-09-15 08:24:01

Locally Permuted Low Rank Column-wise Sensing
Ahmed Ali Abbasi, Namrata Vaswani
arxiv.org/abs/2509.09820 arxiv.org/pdf/2509.09820

@arXiv_mathOC_bot@mastoxiv.page
2025-10-15 09:38:41

A Gradient Guided Diffusion Framework for Chance Constrained Programming
Boyang Zhang, Zhiguo Wang, Ya-Feng Liu
arxiv.org/abs/2510.12238 ar…

@arXiv_csNE_bot@mastoxiv.page
2025-09-15 08:15:41

Predictive Spike Timing Enables Distributed Shortest Path Computation in Spiking Neural Networks
Simen Storesund, Kristian Valset Aars, Robin Dietrich, Nicolai Waniek
arxiv.org/abs/2509.10077

@arXiv_physicsfludyn_bot@mastoxiv.page
2025-10-14 10:08:28

A framework for realisable data-driven active flow control using model predictive control applied to a simplified truck wake
Alberto Solera-Rico, Carlos Sanmiguel Vila, Stefano Discetti
arxiv.org/abs/2510.11600

@arXiv_mathSG_bot@mastoxiv.page
2025-10-14 09:28:58

From Morse Functions to Lefschetz Fibrations on Cotangent Bundles
Emmanuel Giroux
arxiv.org/abs/2510.10669 arxiv.org/pdf/2510.10669

@arXiv_astrophIM_bot@mastoxiv.page
2025-09-15 08:37:41

A Differentiable Surrogate Model for the Generation of Radio Pulses from In-Ice Neutrino Interactions
Philipp Pilar, Martin Ravn, Christian Glaser, Niklas Wahlstr\"om
arxiv.org/abs/2509.10274

@arXiv_csLG_bot@mastoxiv.page
2025-09-15 09:49:41

The Hidden Width of Deep ResNets: Tight Error Bounds and Phase Diagrams
L\'ena\"ic Chizat
arxiv.org/abs/2509.10167 arxiv.org/pdf/2…

@arXiv_csGR_bot@mastoxiv.page
2025-09-15 11:00:01

Replaced article(s) found for cs.GR. arxiv.org/list/cs.GR/new
[1/1]:
- GASP: A Gradient-Aware Shortest Path Algorithm for Boundary-Confined Visualization of 2-Manifold ...
Sefat E. Rahman, Tushar M. Athawale, Paul Rosen

@arXiv_csRO_bot@mastoxiv.page
2025-10-07 11:43:02

Building Gradient by Gradient: Decentralised Energy Functions for Bimanual Robot Assembly
Alexander L. Mitchell, Joe Watson, Ingmar Posner
arxiv.org/abs/2510.04696

@arXiv_csCV_bot@mastoxiv.page
2025-10-14 16:14:34

Crosslisted article(s) found for cs.CV. arxiv.org/list/cs.CV/new
[1/3]:
- Gradient-Sign Masking for Task Vector Transport Across Pre-Trained Models
Rinaldi, Panariello, Salici, Liu, Ciccone, Porrello, Calderara

@arXiv_mathDG_bot@mastoxiv.page
2025-10-08 08:33:39

On curvature estimates for four-dimensional gradient Ricci solitons
Huai-Dong Cao
arxiv.org/abs/2510.06059 arxiv.org/pdf/2510.06059

@arXiv_statML_bot@mastoxiv.page
2025-10-13 08:27:00

Gradient-Guided Furthest Point Sampling for Robust Training Set Selection
Morris Trestman, Stefan Gugler, Felix A. Faber, O. A. von Lilienfeld
arxiv.org/abs/2510.08906

@arXiv_mathOC_bot@mastoxiv.page
2025-10-15 09:08:11

New Classes of Non-monotone Variational Inequality Problems Solvable via Proximal Gradient on Smooth Gap Functions
Lei Zhao, Daoli Zhu, Shuzhong Zhang
arxiv.org/abs/2510.12105

@arXiv_condmatquantgas_bot@mastoxiv.page
2025-10-14 08:56:58

Stable High-Order Vortices in Spin-Orbit-Coupled Spin-1 Bose-Einstein Condensates
Xin-Feng Zhang, Huan-Bo Luo, Josep Batle, Bin Liu, Yongyao Li
arxiv.org/abs/2510.09832

@arXiv_astrophSR_bot@mastoxiv.page
2025-09-12 09:20:19

Rotational radial shear in the low solar photosphere. Direct detection from high-resolution spectro-imaging
T. Corbard (Universit\'e C\^ote d'Azur, Observatoire de la C\^ote d'Azur, CNRS, Laboratoire Lagrange, Nice, France), M. Faurobert (Universit\'e C\^ote d'Azur, Observatoire de la C\^ote d'Azur, CNRS, Laboratoire Lagrange, Nice, France), B. Gelly (CNRS-IRL2009, Tenerife, Spain), R. Douet (CNRS-IRL2009, Tenerife, Spain), D. Laforgue (CNRS-IRL2009, Tenerife, S…

@arXiv_csCL_bot@mastoxiv.page
2025-10-15 10:38:41

SMEC: Rethinking Matryoshka Representation Learning for Retrieval Embedding Compression
Biao Zhang, Lixin Chen, Tong Liu, Bo Zheng
arxiv.org/abs/2510.12474

@UP8@mastodon.social
2025-09-13 02:13:39

Running man spreads his arms like the wings of an airplane
If you're in a hurry to get more running photos check my Behance at behance.net/gallery/234496843/

In the center of the frame a man with the number 161 and a gradient-colored shirt that is blue in the middle to greenish white on the (short sleeves) and (yout) bottom right has his arms spread wide.  He's got a headband, glasses and white shoes.  202 is partially visible on the left and he has a shirt with wide black and white stripes that look like a european soccer uniform,  another male runner is partially cisible on the right and has a white sweatshirt and black running tighets and white s…
@arXiv_condmatmtrlsci_bot@mastoxiv.page
2025-09-10 08:26:21

Effective Atom Theory: Gradient-Driven ab initio Materials Design
Justin Tahmassebpur, Brandon Li, Boris Barron, H\'ector Abru\~na, Peter Frazier, Tom\'as Arias
arxiv.org/abs/2509.07180

@arXiv_statCO_bot@mastoxiv.page
2025-09-15 08:25:21

A Computable Measure of Suboptimality for Entropy-Regularised Variational Objectives
Cl\'ementine Chazal, Heishiro Kanagawa, Zheyang Shen, Anna Korba, Chris. J. Oates
arxiv.org/abs/2509.10393

@arXiv_condmatmeshall_bot@mastoxiv.page
2025-10-09 09:32:21

Thermal gradient-driven skyrmion dynamics with near-zero skyrmion Hall angle
Yogesh Kumar, Hurmal Saren, Pintu Das
arxiv.org/abs/2510.07020

@arXiv_csLG_bot@mastoxiv.page
2025-09-10 10:25:51

GCond: Gradient Conflict Resolution via Accumulation-based Stabilization for Large-Scale Multi-Task Learning
Evgeny Alves Limarenko, Anastasiia Alexandrovna Studenikina
arxiv.org/abs/2509.07252

@arXiv_hepph_bot@mastoxiv.page
2025-10-14 19:27:00

Replaced article(s) found for hep-ph. arxiv.org/list/hep-ph/new
[1/2]:
- Simple Gradient Flow Equation for the Bounce Solution
Ryosuke Sato

@arXiv_csCV_bot@mastoxiv.page
2025-10-14 22:04:05

Replaced article(s) found for cs.CV. arxiv.org/list/cs.CV/new
[4/8]:
- Boosting Adversarial Transferability via Commonality-Oriented Gradient Optimization
Yanting Gao, Yepeng Liu, Junming Liu, Qi Zhang, Hongyun Zhang, Duoqian Miao, Cairong Zhao

@arXiv_condmatstatmech_bot@mastoxiv.page
2025-10-10 07:57:48

Thermodynamically Consistent Continuum Theory of Magnetic Particles in High-Gradient Fields
Marko Tesanovic, Daniel M. Markiewitz, Marcus L. Popp, Martin Z. Bazant, Sonja Berensmeier
arxiv.org/abs/2510.07552

@arXiv_csCR_bot@mastoxiv.page
2025-10-09 09:21:21

Reading Between the Lines: Towards Reliable Black-box LLM Fingerprinting via Zeroth-order Gradient Estimation
Shuo Shao, Yiming Li, Hongwei Yao, Yifei Chen, Yuchen Yang, Zhan Qin
arxiv.org/abs/2510.06605

@arXiv_statML_bot@mastoxiv.page
2025-10-15 09:29:01

Active Subspaces in Infinite Dimension
Poorbita Kundu, Nathan Wycoff
arxiv.org/abs/2510.11871 arxiv.org/pdf/2510.11871

@arXiv_mathNA_bot@mastoxiv.page
2025-10-15 09:51:12

On the maximum bound principle and energy dissipation of exponential time differencing methods for the chiral liquid crystal blue phases
Wenshuai Hu, Guanghua Ji
arxiv.org/abs/2510.12499

@arXiv_mathPR_bot@mastoxiv.page
2025-09-09 11:12:42

Infinite Interacting Brownian Motions and EVI Gradient Flows
Kohei Suzuki
arxiv.org/abs/2509.06869 arxiv.org/pdf/2509.06869

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:50:00

(Adaptive) Scaled gradient methods beyond locally Holder smoothness: Lyapunov analysis, convergence rate and complexity
Susan Ghaderi, Morteza Rahimi, Yves Moreau, Masoud Ahookhosh
arxiv.org/abs/2511.10425 arxiv.org/pdf/2511.10425 arxiv.org/html/2511.10425
arXiv:2511.10425v1 Announce Type: new
Abstract: This paper addresses the unconstrained minimization of smooth convex functions whose gradients are locally Holder continuous. Building on these results, we analyze the Scaled Gradient Algorithm (SGA) under local smoothness assumptions, proving its global convergence and iteration complexity. Furthermore, under local strong convexity and the Kurdyka-Lojasiewicz (KL) inequality, we establish linear convergence rates and provide explicit complexity bounds. In particular, we show that when the gradient is locally Lipschitz continuous, SGA attains linear convergence for any KL exponent. We then introduce and analyze an adaptive variant of SGA (AdaSGA), which automatically adjusts the scaling and step-size parameters. For this method, we show global convergence, and derive local linear rates under strong convexity.
toXiv_bot_toot

@arXiv_astrophGA_bot@mastoxiv.page
2025-10-13 08:59:10

Galaxy Metallicity Gradients in the Reionization Epoch from the FIRE-2 Simulations
Xunda Sun, Xin Wang, Fangzhou Jiang, Houjun Mo, Luis C. Ho, Qianqiao Zhou, Xiangcheng Ma, Hu Zhan, Andrew Wetzel, Russell L. Graf, Philip F. Hopkins, Dusan Keres, Jonathan Stern
arxiv.org/abs/2510.08997

@arXiv_astrophIM_bot@mastoxiv.page
2025-10-14 11:02:08

Argus: JAX state-space filtering for gravitational wave detection with a pulsar timing array
Tom Kimpson, Nicholas J. O'Neill, Patrick M. Meyers, Andrew Melatos
arxiv.org/abs/2510.11077

@arXiv_condmatstrel_bot@mastoxiv.page
2025-10-15 08:02:11

Evidence for easy-plane XY ferromagnetism in heavy-fermion quantum-critical CeRh6Ge4
Riku Yamamoto, Sejun Park, Zachary W. Riedel, Phurba Sherpa, Joe D. Thompson, Filip Ronning, Eric D. Bauer, Adam P. Dioguardi, Michihiro Hirata
arxiv.org/abs/2510.12006

@arXiv_csLG_bot@mastoxiv.page
2025-09-15 09:31:21

Data-Driven Energy Estimation for Virtual Servers Using Combined System Metrics and Machine Learning
Amandip Sangha
arxiv.org/abs/2509.09991

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:19:00

Global Convergence of Four-Layer Matrix Factorization under Random Initialization
Minrui Luo, Weihang Xu, Xiang Gao, Maryam Fazel, Simon Shaolei Du
arxiv.org/abs/2511.09925 arxiv.org/pdf/2511.09925 arxiv.org/html/2511.09925
arXiv:2511.09925v1 Announce Type: new
Abstract: Gradient descent dynamics on the deep matrix factorization problem is extensively studied as a simplified theoretical model for deep neural networks. Although the convergence theory for two-layer matrix factorization is well-established, no global convergence guarantee for general deep matrix factorization under random initialization has been established to date. To address this gap, we provide a polynomial-time global convergence guarantee for randomly initialized gradient descent on four-layer matrix factorization, given certain conditions on the target matrix and a standard balanced regularization term. Our analysis employs new techniques to show saddle-avoidance properties of gradient decent dynamics, and extends previous theories to characterize the change in eigenvalues of layer weights.
toXiv_bot_toot

@arXiv_mathDG_bot@mastoxiv.page
2025-10-09 08:19:10

Stability of asymptotically conical gradient K\"ahler-Ricci expanders
Longteng Chen
arxiv.org/abs/2510.06850 arxiv.org/pdf/2510.06850

@arXiv_physicsfludyn_bot@mastoxiv.page
2025-09-10 08:36:21

Decoupling pressure gradient history effects in turbulent boundary layers through high-Reynolds number experiments
Ahmad Zarei, Mitchell Lozier, Rahul Deshpande, Ivan Marusic
arxiv.org/abs/2509.07545

@arXiv_csLG_bot@mastoxiv.page
2025-09-15 09:57:11

Understanding Outer Optimizers in Local SGD: Learning Rates, Momentum, and Acceleration
Ahmed Khaled, Satyen Kale, Arthur Douillard, Chi Jin, Rob Fergus, Manzil Zaheer
arxiv.org/abs/2509.10439

@arXiv_mathAP_bot@mastoxiv.page
2025-09-15 08:28:51

Homogenization of rate-independent elastoplastic spring network models with non-local random fields
Simone Hermann
arxiv.org/abs/2509.09872

@arXiv_csLG_bot@mastoxiv.page
2025-10-14 13:41:28

Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models
Nianyi Lin, Jiajie Zhang, Lei Hou, Juanzi Li
arxiv.org/abs/2510.11683

@arXiv_csCR_bot@mastoxiv.page
2025-09-09 11:56:52

PLRV-O: Advancing Differentially Private Deep Learning via Privacy Loss Random Variable Optimization
Qin Yang, Nicholas Stout, Meisam Mohammady, Han Wang, Ayesha Samreen, Christopher J Quinn, Yan Yan, Ashish Kundu, Yuan Hong
arxiv.org/abs/2509.06264

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 10:01:50

Low-Discrepancy Set Post-Processing via Gradient Descent
Fran\c{c}ois Cl\'ement, Linhang Huang, Woorim Lee, Cole Smidt, Braeden Sodt, Xuan Zhang
arxiv.org/abs/2511.10496 arxiv.org/pdf/2511.10496 arxiv.org/html/2511.10496
arXiv:2511.10496v1 Announce Type: new
Abstract: The construction of low-discrepancy sets, used for uniform sampling and numerical integration, has recently seen great improvements based on optimization and machine learning techniques. However, these methods are computationally expensive, often requiring days of computation or access to GPU clusters. We show that simple gradient descent-based techniques allow for comparable results when starting with a reasonably uniform point set. Not only is this method much more efficient and accessible, but it can be applied as post-processing to any low-discrepancy set generation method for a variety of standard discrepancy measures.
toXiv_bot_toot

@arXiv_quantph_bot@mastoxiv.page
2025-10-08 10:24:49

Hybrid Quantum-Classical Policy Gradient for Adaptive Control of Cyber-Physical Systems: A Comparative Study of VQC vs. MLP
Aueaphum Aueawatthanaphisut, Nyi Wunna Tun
arxiv.org/abs/2510.06010

@arXiv_mathNA_bot@mastoxiv.page
2025-10-10 08:55:59

Stochastic Gradient Descent for Incomplete Tensor Linear Systems
Anna Ma, Deanna Needell, Alexander Xue
arxiv.org/abs/2510.07630 arxiv.org/…

@arXiv_mathAP_bot@mastoxiv.page
2025-09-15 07:53:21

Zeroes of Eigenfunctions of Schr\"odinger Operators after Schwartzman
Willie Wai-Yeung Wong
arxiv.org/abs/2509.09739 arxiv.org/pdf/250…

@arXiv_mathDG_bot@mastoxiv.page
2025-10-07 10:16:22

Curvature pinching of asymptotically conical gradient expanding Ricci solitons
Huai-Dong Cao, Junming Xie
arxiv.org/abs/2510.05075 arxiv.or…

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:37:10

S-D-RSM: Stochastic Distributed Regularized Splitting Method for Large-Scale Convex Optimization Problems
Maoran Wang, Xingju Cai, Yongxin Chen
arxiv.org/abs/2511.10133 arxiv.org/pdf/2511.10133 arxiv.org/html/2511.10133
arXiv:2511.10133v1 Announce Type: new
Abstract: This paper investigates the problems large-scale distributed composite convex optimization, with motivations from a broad range of applications, including multi-agent systems, federated learning, smart grids, wireless sensor networks, compressed sensing, and so on. Stochastic gradient descent (SGD) and its variants are commonly employed to solve such problems. However, existing algorithms often rely on vanishing step sizes, strong convexity assumptions, or entail substantial computational overhead to ensure convergence or obtain favorable complexity. To bridge the gap between theory and practice, we integrate consensus optimization and operator splitting techniques (see Problem Reformulation) to develop a novel stochastic splitting algorithm, termed the \emph{stochastic distributed regularized splitting method} (S-D-RSM). In practice, S-D-RSM performs parallel updates of proximal mappings and gradient information for only a randomly selected subset of agents at each iteration. By introducing regularization terms, it effectively mitigates consensus discrepancies among distributed nodes. In contrast to conventional stochastic methods, our theoretical analysis establishes that S-D-RSM achieves global convergence without requiring diminishing step sizes or strong convexity assumptions. Furthermore, it achieves an iteration complexity of $\mathcal{O}(1/\epsilon)$ with respect to both the objective function value and the consensus error. Numerical experiments show that S-D-RSM achieves up to 2--3$\times$ speedup compared to state-of-the-art baselines, while maintaining comparable or better accuracy. These results not only validate the algorithm's theoretical guarantees but also demonstrate its effectiveness in practical tasks such as compressed sensing and empirical risk minimization.
toXiv_bot_toot

@arXiv_mathAP_bot@mastoxiv.page
2025-09-10 08:39:51

Gradient Flows of Interfacial Energies: Curvature Agents and Incompressibility
Keith Promislow, Truong Vu, Brian Wetton
arxiv.org/abs/2509.07380

@arXiv_statML_bot@mastoxiv.page
2025-10-08 09:29:19

On the Theory of Continual Learning with Gradient Descent for Neural Networks
Hossein Taheri, Avishek Ghosh, Arya Mazumdar
arxiv.org/abs/2510.05573

@arXiv_csLG_bot@mastoxiv.page
2025-10-10 11:18:19

On the optimization dynamics of RLVR: Gradient gap and step size thresholds
Joe Suk, Yaqi Duan
arxiv.org/abs/2510.08539 arxiv.org/pdf/2510.…

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 13:23:10

Replaced article(s) found for math.OC. arxiv.org/list/math.OC/new
[1/1]:
- A robust BFGS algorithm for unconstrained nonlinear optimization problems
Yaguang Yang
arxiv.org/abs/1212.5929
- Quantum computing and the stable set problem
Alja\v{z} Krpan, Janez Povh, Dunja Pucher
arxiv.org/abs/2405.12845 mastoxiv.page/@arXiv_mathOC_bo
- Mean Field Game with Reflected Jump Diffusion Dynamics: A Linear Programming Approach
Zongxia Liang, Xiang Yu, Keyu Zhang
arxiv.org/abs/2508.20388 mastoxiv.page/@arXiv_mathOC_bo
- Differential Dynamic Programming for the Optimal Control Problem with an Ellipsoidal Target Set a...
Sungjun Eom, Gyunghoon Park
arxiv.org/abs/2509.07546 mastoxiv.page/@arXiv_mathOC_bo
- On the Moreau envelope properties of weakly convex functions
Marien Renaud, Arthur Leclaire, Nicolas Papadakis
arxiv.org/abs/2509.13960 mastoxiv.page/@arXiv_mathOC_bo
- Automated algorithm design via Nevanlinna-Pick interpolation
Ibrahim K. Ozaslan, Tryphon T. Georgiou, Mihailo R. Jovanovic
arxiv.org/abs/2509.21416 mastoxiv.page/@arXiv_mathOC_bo
- Optimal Control of a Bioeconomic Crop-Energy System with Energy Reinvestment
Othman Cherkaoui Dekkaki
arxiv.org/abs/2510.11381 mastoxiv.page/@arXiv_mathOC_bo
- Point Convergence Analysis of the Accelerated Gradient Method for Multiobjective Optimization: Co...
Yingdong Yin
arxiv.org/abs/2510.26382 mastoxiv.page/@arXiv_mathOC_bo
- History-Aware Adaptive High-Order Tensor Regularization
Chang He, Bo Jiang, Yuntian Jiang, Chuwen Zhang, Shuzhong Zhang
arxiv.org/abs/2511.05788
- Equivalence of entropy solutions and gradient flows for pressureless 1D Euler systems
Jos\'e Antonio Carrillo, Sondre Tesdal Galtung
arxiv.org/abs/2312.04932 mastoxiv.page/@arXiv_mathAP_bo
- Kernel Modelling of Fading Memory Systems
Yongkang Huo, Thomas Chaffey, Rodolphe Sepulchre
arxiv.org/abs/2403.11945 mastoxiv.page/@arXiv_eessSY_bo
- The Maximum Theoretical Ground Speed of the Wheeled Vehicle
Altay Zhakatayev, Mukatai Nemerebayev
arxiv.org/abs/2502.15341 mastoxiv.page/@arXiv_physicscl
- Hessian stability and convergence rates for entropic and Sinkhorn potentials via semiconcavity
Giacomo Greco, Luca Tamanini
arxiv.org/abs/2504.11133 mastoxiv.page/@arXiv_mathPR_bo
- Optimizing the ground state energy of the three-dimensional magnetic Dirichlet Laplacian with con...
Matthias Baur
arxiv.org/abs/2504.21597 mastoxiv.page/@arXiv_mathph_bo
- A localized consensus-based sampling algorithm
Arne Bouillon, Alexander Bodard, Panagiotis Patrinos, Dirk Nuyens, Giovanni Samaey
arxiv.org/abs/2505.24861 mastoxiv.page/@arXiv_mathNA_bo
- A Novel Sliced Fused Gromov-Wasserstein Distance
Moritz Piening, Robert Beinert
arxiv.org/abs/2508.02364 mastoxiv.page/@arXiv_csLG_bot/
- Minimal Regret Walras Equilibria for Combinatorial Markets via Duality, Integrality, and Sensitiv...
Alo\"is Duguet, Tobias Harks, Martin Schmidt, Julian Schwarz
arxiv.org/abs/2511.09021 mastoxiv.page/@arXiv_csGT_bot/
toXiv_bot_toot

@arXiv_csCV_bot@mastoxiv.page
2025-09-09 12:29:42

Evaluating the Impact of Adversarial Attacks on Traffic Sign Classification using the LISA Dataset
Nabeyou Tadessa, Balaji Iyangar, Mashrur Chowdhury
arxiv.org/abs/2509.06835

@arXiv_statML_bot@mastoxiv.page
2025-10-07 10:11:52

Computing Wasserstein Barycenters through Gradient Flows
Eduardo Fernandes Montesuma, Yassir Bendou, Mike Gartrell
arxiv.org/abs/2510.04602

@arXiv_mathDG_bot@mastoxiv.page
2025-10-10 08:47:49

Asymptotic behaviour of the weak inverse anisotropic mean curvature flow
Chaoqun Gao, Yong Wei, Rong Zhou
arxiv.org/abs/2510.08168 arxiv.or…

@arXiv_csLG_bot@mastoxiv.page
2025-10-13 10:44:10

Weight Initialization and Variance Dynamics in Deep Neural Networks and Large Language Models
Yankun Han
arxiv.org/abs/2510.09423 arxiv.org…

@arXiv_mathOC_bot@mastoxiv.page
2025-10-15 08:44:02

Linear Convergence of a Unified Primal--Dual Algorithm for Convex--Concave Saddle Point Problems with Quadratic Growth
Cody Melcher, Afrooz Jalilzadeh, Erfan Yazdandoost Hamedani
arxiv.org/abs/2510.11990

@arXiv_mathAP_bot@mastoxiv.page
2025-09-10 09:42:51

A gradient estimate for the linearized translator equation
Kyeongsu Choi, Robert Haslhofer, Or Hershkovits
arxiv.org/abs/2509.07629 arxiv.o…

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 11:57:39

Accelerated stochastic first-order method for convex optimization under heavy-tailed noise
Chuan He, Zhaosong Lu
arxiv.org/abs/2510.11676 a…

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 10:13:18

Linear Algebra Problems Solved by Using Damped Dynamical Systems on the Stiefel Manifold
M Gulliksson, A Oleynik, M Ogren, R Bakhshandeh-Chamazkoti
arxiv.org/abs/2510.10535

@arXiv_csLG_bot@mastoxiv.page
2025-10-08 10:38:29

NeST-BO: Fast Local Bayesian Optimization via Newton-Step Targeting of Gradient and Hessian Information
Wei-Ting Tang, Akshay Kudva, Joel A. Paulson
arxiv.org/abs/2510.05516

@arXiv_statML_bot@mastoxiv.page
2025-09-30 09:30:11

Statistical Inference for Gradient Boosting Regression
Haimo Fang, Kevin Tan, Giles Hooker
arxiv.org/abs/2509.23127 arxiv.org/pdf/2509.2312…

@arXiv_mathOC_bot@mastoxiv.page
2025-10-15 09:36:42

Learning Mean-Field Games through Mean-Field Actor-Critic Flow
Mo Zhou, Haosheng Zhou, Ruimeng Hu
arxiv.org/abs/2510.12180 arxiv.org/pdf/25…

@arXiv_csLG_bot@mastoxiv.page
2025-10-03 11:00:21

Flatness-Aware Stochastic Gradient Langevin Dynamics
Stefano Bruno, Youngsik Hwang, Jaehyeon An, Sotirios Sabanis, Dong-Young Lim
arxiv.org/abs/2510.02174

@arXiv_mathAP_bot@mastoxiv.page
2025-10-10 09:28:29

Gradient regularity for widely degenerate parabolic equations
Michael Strunk
arxiv.org/abs/2510.07999 arxiv.org/pdf/2510.07999

@arXiv_mathOC_bot@mastoxiv.page
2025-09-12 07:56:29

Convexity of Optimization Curves: Local Sharp Thresholds, Robustness Impossibility, and New Counterexamples
Le Duc Hieu
arxiv.org/abs/2509.08954

@arXiv_csLG_bot@mastoxiv.page
2025-09-01 09:56:02

Convergence of Stochastic Gradient Methods for Wide Two-Layer Physics-Informed Neural Networks
Bangti Jin, Longjun Wu
arxiv.org/abs/2508.21571

@arXiv_csLG_bot@mastoxiv.page
2025-10-06 10:25:09

AdaBet: Gradient-free Layer Selection for Efficient Training of Deep Neural Networks
Irene Tenison, Soumyajit Chatterjee, Fahim Kawsar, Mohammad Malekzadeh
arxiv.org/abs/2510.03101

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 10:10:20

Global Solutions to Non-Convex Functional Constrained Problems with Hidden Convexity
Ilyas Fatkhullin, Niao He, Guanghui Lan, Florian Wolf
arxiv.org/abs/2511.10626 arxiv.org/pdf/2511.10626 arxiv.org/html/2511.10626
arXiv:2511.10626v1 Announce Type: new
Abstract: Constrained non-convex optimization is fundamentally challenging, as global solutions are generally intractable and constraint qualifications may not hold. However, in many applications, including safe policy optimization in control and reinforcement learning, such problems possess hidden convexity, meaning they can be reformulated as convex programs via a nonlinear invertible transformation. Typically such transformations are implicit or unknown, making the direct link with the convex program impossible. On the other hand, (sub-)gradients with respect to the original variables are often accessible or can be easily estimated, which motivates algorithms that operate directly in the original (non-convex) problem space using standard (sub-)gradient oracles. In this work, we develop the first algorithms to provably solve such non-convex problems to global minima. First, using a modified inexact proximal point method, we establish global last-iterate convergence guarantees with $\widetilde{\mathcal{O}}(\varepsilon^{-3})$ oracle complexity in non-smooth setting. For smooth problems, we propose a new bundle-level type method based on linearly constrained quadratic subproblems, improving the oracle complexity to $\widetilde{\mathcal{O}}(\varepsilon^{-1})$. Surprisingly, despite non-convexity, our methodology does not require any constraint qualifications, can handle hidden convex equality constraints, and achieves complexities matching those for solving unconstrained hidden convex optimization.
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:44:20

On fundamental properties of high-order forward-backward envelope
Alireza Kabgani, Masoud Ahookhosh
arxiv.org/abs/2511.10421 arxiv.org/pdf/2511.10421 arxiv.org/html/2511.10421
arXiv:2511.10421v1 Announce Type: new
Abstract: This paper studies the fundamental properties of the high-order forward-backward splitting mapping (HiFBS) and its associated forward-backward envelope (HiFBE) through the lens of high-order regularization for nonconvex composite functions. Specifically, we (i) establish the boundedness and uniform boundedness of HiFBS, along with the H\"older and Lipschitz continuity of HiFBE; (ii) derive an explicit form for the subdifferentials of HiFBE; and (iii) investigate necessary and sufficient conditions for the differentiability and weak smoothness of HiFBE under suitable assumptions. By leveraging the prox-regularity of $g$ and the concept of $p$-calmness, we further demonstrate the local single-valuedness and continuity of HiFBS, which in turn guarantee the differentiability of HiFBE in neighborhoods of calm points. This paves the way for the development of gradient-based algorithms tailored to nonconvex composite optimization problems.
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:41:00

Minimizing smooth Kurdyka-{\L}ojasiewicz functions via generalized descent methods: Convergence rate and complexity
Masoud Ahookhosh, Susan Ghaderi, Alireza Kabgani, Morteza Rahimi
arxiv.org/abs/2511.10414 arxiv.org/pdf/2511.10414 arxiv.org/html/2511.10414
arXiv:2511.10414v1 Announce Type: new
Abstract: This paper addresses the generalized descent algorithm (DEAL) for minimizing smooth functions, which is analyzed under the Kurdyka-{\L}ojasiewicz (KL) inequality. In particular, the suggested algorithm guarantees a sufficient decrease by adapting to the cost function's geometry. We leverage the KL property to establish the global convergence, convergence rates, and complexity. A particular focus is placed on the linear convergence of generalized descent methods. We show that the constant step-size and Armijo line search strategies along a generalized descent direction satisfy our generalized descent condition. Additionally, for nonsmooth functions by leveraging the smoothing techniques such as forward-backward and high-order Moreau envelopes, we show that the boosted proximal gradient method (BPGA) and the boosted high-order proximal-point (BPPA) methods are also specific cases of DEAL, respectively. It is notable that if the order of the high-order proximal term is chosen in a certain way (depending on the KL exponent), then the sequence generated by BPPA converges linearly for an arbitrary KL exponent. Our preliminary numerical experiments on inverse problems and LASSO demonstrate the efficiency of the proposed methods, validating our theoretical findings.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-09-12 09:02:19

Value bounds and Convergence Analysis for Averages of LRP attributions
Alexander Binder, Nastaran Takmil-Homayouni, Urun Dogan
arxiv.org/abs/2509.08963

@arXiv_csLG_bot@mastoxiv.page
2025-10-08 10:46:59

Inductive inference of gradient-boosted decision trees on graphs for insurance fraud detection
F\'elix Vandervorst, Bruno Deprez, Wouter Verbeke, Tim Verdonck
arxiv.org/abs/2510.05676

@arXiv_csLG_bot@mastoxiv.page
2025-09-12 10:07:39

Balancing Utility and Privacy: Dynamically Private SGD with Random Projection
Zhanhong Jiang, Md Zahid Hasan, Nastaran Saadati, Aditya Balu, Chao Liu, Soumik Sarkar
arxiv.org/abs/2509.09485

@arXiv_mathOC_bot@mastoxiv.page
2025-09-11 09:51:13

Linear Convergence of Gradient Descent for Quadratically Regularized Optimal Transport
Alberto Gonz\'alez-Sanz, Marcel Nutz, Andr\'es Riveros Valdevenito
arxiv.org/abs/2509.08547

@arXiv_csLG_bot@mastoxiv.page
2025-09-12 12:47:22

Replaced article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[2/5]:
- Convergence Analysis of Asynchronous Federated Learning with Gradient Compression for Non-Convex ...
Diying Yang, Yingwei Hou, Weigang Wu

@arXiv_mathOC_bot@mastoxiv.page
2025-10-09 09:24:51

Approximate Bregman proximal gradient algorithm with variable metric Armijo--Wolfe line search
Kiwamu Fujiki, Shota Takahashi, Akiko Takeda
arxiv.org/abs/2510.06615

@arXiv_mathOC_bot@mastoxiv.page
2025-10-13 08:52:00

Data-driven multifidelity and multiscale topology optimization based on phasor-based evolutionary de-homogenization
Shuzhi Xu, Yifan Guo, Hiroki Kawabe, Kentaro Yaji
arxiv.org/abs/2510.08830

@arXiv_csLG_bot@mastoxiv.page
2025-10-08 10:26:09

Correlating Cross-Iteration Noise for DP-SGD using Model Curvature
Xin Gu, Yingtai Xiao, Guanlin He, Jiamu Bai, Daniel Kifer, Kiwan Maeng
arxiv.org/abs/2510.05416

@arXiv_mathOC_bot@mastoxiv.page
2025-09-04 09:04:31

Stochastic versus Deterministic in Stochastic Gradient Descent
Runze Li, Jintao Xu, Wenxun Xing
arxiv.org/abs/2509.02912 arxiv.org/pdf/2509…

@arXiv_mathOC_bot@mastoxiv.page
2025-10-06 09:27:49

Quantitative Convergence Analysis of Projected Stochastic Gradient Descent for Non-Convex Losses via the Goldstein Subdifferential
Yuping Zheng, Andrew Lamperski
arxiv.org/abs/2510.02735

@arXiv_csLG_bot@mastoxiv.page
2025-10-03 11:04:31

Robust Tangent Space Estimation via Laplacian Eigenvector Gradient Orthogonalization
Dhruv Kohli, Sawyer J. Robertson, Gal Mishne, Alexander Cloninger
arxiv.org/abs/2510.02308

@arXiv_mathOC_bot@mastoxiv.page
2025-09-11 08:55:43

Finding a Multiple Follower Stackelberg Equilibrium: A Fully First-Order Method
April Niu, Kai Wang, Juba Ziani
arxiv.org/abs/2509.08161 ar…

@arXiv_mathOC_bot@mastoxiv.page
2025-09-05 07:58:11

Towards understanding Accelerated Stein Variational Gradient Flow -- Analysis of Generalized Bilinear Kernels for Gaussian target distributions
Viktor Stein, Wuchen Li
arxiv.org/abs/2509.04008

@arXiv_mathOC_bot@mastoxiv.page
2025-09-04 10:06:21

On the Perturbed Projection-Based Distributed Gradient-Descent Algorithm: A Fully-Distributed Adaptive Redesign
Tarek Bazizi, Mohamed Maghenem, Paolo Frasca, Antonio Lor\`ia, Elena Panteley
arxiv.org/abs/2509.03443