
Quantum DeepONet: Neural operators accelerated by quantum computing
In the realm of computational science and engineering, constructing models that reflect real-world phenomena requires solving partial differential equations (PDEs) with different conditions. Recent advancements in neural operators, such as deep operator network (DeepONet), which learn mappings between infinite-dimensional function spaces, promise efficient computation of PDE solutions for a new condition in a single forward pass. However, classical DeepONet entails quadratic complexity concerni…