Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@erikdelareguera@mastodon.nu
2025-07-19 13:23:30

När han sade: ”Ryska krigsskepp, dra åt helvete!” var han övertygad om att han skulle dö.
Men Roman Hrybov överlevde. Framför allt överlevde hans ord.
Läs Anna-Lena Lauréns och Daniel Costantinis intervju med Hrybov. dn.se/varlden…

@arXiv_csHC_bot@mastoxiv.page
2025-09-18 08:56:51

DuetUI: A Bidirectional Context Loop for Human-Agent Co-Generation of Task-Oriented Interfaces
Yuan Xu, Shaowen Xiang, Yizhi Song, Ruoting Sun, Xin Tong
arxiv.org/abs/2509.13444

@samir@functional.computer
2025-08-18 11:34:53

@… @… That’s one of the reasons I don’t use an LLM!
I did try it once, for coding. It lied to me. So I didn’t use it again.
People keep saying “it’s like an intern”. If an intern repeatedly lies to your face, they are bad at the on…

@arXiv_csCL_bot@mastoxiv.page
2025-08-19 11:38:50

ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction
Xingshan Zeng, Weiwen Liu, Lingzhi Wang, Liangyou Li, Fei Mi, Yasheng Wang, Lifeng Shang, Xin Jiang, Qun Liu
arxiv.org/abs/2508.12685

@netzschleuder@social.skewed.de
2025-08-18 13:00:05

us_roads: United States roads (2000)
The road networks of the 50 US States and the District of Columbia based on UA Census 2000 TIGER/Line Files. Edges are stretches of road and vertices are intersections of roads. The data sets were assembled by Dominik Schultes. The 'merged' network contains all the states merged together.
This network has 64892 nodes and 76809 edges.
Tags: Transportation, Roads, Unweighted

us_roads: United States roads (2000). 64892 nodes, 76809 edges. https://networks.skewed.de/net/us_roads#HI
@arXiv_csDC_bot@mastoxiv.page
2025-09-18 08:57:51

LLM Agents for Interactive Workflow Provenance: Reference Architecture and Evaluation Methodology
Renan Souza, Timothy Poteet, Brian Etz, Daniel Rosendo, Amal Gueroudji, Woong Shin, Prasanna Balaprakash, Rafael Ferreira da Silva
arxiv.org/abs/2509.13978

@arXiv_condmatmtrlsci_bot@mastoxiv.page
2025-08-19 09:49:10

Accelerating Amorphous Alloy Discovery: Data-Driven Property Prediction via General-Purpose Machine Learning Interatomic Potential
Xuhe Gong, Hengbo Zhao, Xiao Fu, Jingchen Lian, Qifan Yang, Ran Li, Ruijuan Xiao, Tao Zhang, Hong Li
arxiv.org/abs/2508.11989

@arXiv_csNE_bot@mastoxiv.page
2025-08-19 08:37:30

Data-Driven Discovery of Interpretable Kalman Filter Variants through Large Language Models and Genetic Programming
Vasileios Saketos, Sebastian Kaltenbach, Sergey Litvinov, Petros Koumoutsakos
arxiv.org/abs/2508.11703

@arXiv_csCL_bot@mastoxiv.page
2025-09-18 08:12:31

Latent Traits and Cross-Task Transfer: Deconstructing Dataset Interactions in LLM Fine-tuning
Shambhavi Krishna, Atharva Naik, Chaitali Agarwal, Sudharshan Govindan, Taesung Lee, Haw-Shiuan Chang
arxiv.org/abs/2509.13624

@arXiv_csCL_bot@mastoxiv.page
2025-09-17 10:38:00

Evaluating LLM Alignment on Personality Inference from Real-World Interview Data
Jianfeng Zhu, Julina Maharjan, Xinyu Li, Karin G. Coifman, Ruoming Jin
arxiv.org/abs/2509.13244