🇺🇦 #NowPlaying on BBCRadio3's #LateJunction
Karl Burke:
🎵 Cage on a Stage
#KarlBurke
Lower estimates for the norm and the Kuratowski measure of moncompactness of Wiener-Hopf type operators
Oleksiy Karlovych, Eugene Shargorodsky
https://arxiv.org/abs/2509.20296 h…
🇺🇦 #NowPlaying on KEXP's #MiddayShow
Kurilpa Reach:
🎵 The Mountain
#KurilpaReach
https://kurilpareach.bandcamp.com/track/the-mountain
https://open.spotify.com/track/2lnBBhGZXQyPfzo0p6SvQY
I'm going home - the master version.
#karlbushby
Randomized flexible Krylov methods for $\ell_p$ regularization
Malena Sabat\'e Landman, Yuji Nakatsukasa
https://arxiv.org/abs/2510.11237 https://arxiv…
Tangent space Krylov computation of real-frequency spectral functions: Influence of density-assisted hopping on 2D Mott physics
Oleksandra Kovalska, Jan von Delft, Andreas Gleis
https://arxiv.org/abs/2510.07279
An inexact semismooth Newton-Krylov method for semilinear elliptic optimal control problem
Shiqi Chen, Xuesong Chen
https://arxiv.org/abs/2511.10058 https://arxiv.org/pdf/2511.10058 https://arxiv.org/html/2511.10058
arXiv:2511.10058v1 Announce Type: new
Abstract: An inexact semismooth Newton method has been proposed for solving semi-linear elliptic optimal control problems in this paper. This method incorporates the generalized minimal residual (GMRES) method, a type of Krylov subspace method, to solve the Newton equations and utilizes nonmonotonic line search to adjust the iteration step size. The original problem is reformulated into a nonlinear equation through variational inequality principles and discretized using a second-order finite difference scheme. By leveraging slanting differentiability, the algorithm constructs semismooth Newton directions and employs GMRES method to inexactly solve the Newton equations, significantly reducing computational overhead. A dynamic nonmonotonic line search strategy is introduced to adjust stepsizes adaptively, ensuring global convergence while overcoming local stagnation. Theoretical analysis demonstrates that the algorithm achieves superlinear convergence near optimal solutions when the residual control parameter $\eta_k$ approaches to 0. Numerical experiments validate the method's accuracy and efficiency in solving semilinear elliptic optimal control problems, corroborating theoretical insights.
toXiv_bot_toot
RE: #notThatJesus
No, we don't follow that Jesus, we follow the Jesus of the old testa…
Und ich bin gar nicht mal so gespannt, ob das in deutschen Medien einen ähnlichen Aufruhr auslöst wie irgendeine Gruppierung der Linken in Berlin, die vermeintlich irgendeine rechtsradikale Drecksschleuder angegriffen hat.
https://bsky.brid.gy/r/https://bsky.a…
🇺🇦 #NowPlaying on BBCRadio3's #ThroughTheNight
Karel Vrtiska & Bedřich Smetana:
🎵 2 Dances (Czech Dances, Book II)
#KarelVrtiska #BedřichSmetana