Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_csLG_bot@mastoxiv.page
2025-09-22 10:33:31

DIVEBATCH: Accelerating Model Training Through Gradient-Diversity Aware Batch Size Adaptation
Yuen Chen, Yian Wang, Hari Sundaram
arxiv.org/abs/2509.16173

@arXiv_csLG_bot@mastoxiv.page
2025-09-22 10:23:51

Targeted Fine-Tuning of DNN-Based Receivers via Influence Functions
Marko Tuononen, Heikki Penttinen, Ville Hautam\"aki
arxiv.org/abs/2509.15950

@arXiv_eessAS_bot@mastoxiv.page
2025-09-22 08:10:01

State-of-the-Art Dysarthric Speech Recognition with MetaICL for on-the-fly Personalization
Dhruuv Agarwal, Harry Zhang, Yang Yu, Quan Wang
arxiv.org/abs/2509.15516

@arXiv_statML_bot@mastoxiv.page
2025-10-15 09:02:51

Dimension-Free Minimax Rates for Learning Pairwise Interactions in Attention-Style Models
Shai Zucker, Xiong Wang, Fei Lu, Inbar Seroussi
arxiv.org/abs/2510.11789

@detondev@social.linux.pizza
2025-11-16 13:19:45

Im still "e-learning" how to generate aura and hype moments at a market-competitive rate so bear with me

@arXiv_csAI_bot@mastoxiv.page
2025-10-14 12:29:28

Operand Quant: A Single-Agent Architecture for Autonomous Machine Learning Engineering
Arjun Sahney, Ram Gorthi, Cezary {\L}astowski, Javier Vega
arxiv.org/abs/2510.11694

@arXiv_eessSP_bot@mastoxiv.page
2025-10-15 07:53:51

Based on Deep Neural Networks: A Machine Learning-Assisted Channel Estimation Method for MIMO Systems
Haoran He
arxiv.org/abs/2510.11891 ar…

@arXiv_csGT_bot@mastoxiv.page
2025-12-10 08:00:50

Multi-agent learning under uncertainty: Recurrence vs. concentration
Kyriakos Lotidis, Panayotis Mertikopoulos, Nicholas Bambos, Jose Blanchet
arxiv.org/abs/2512.08132 arxiv.org/pdf/2512.08132 arxiv.org/html/2512.08132
arXiv:2512.08132v1 Announce Type: new
Abstract: In this paper, we examine the convergence landscape of multi-agent learning under uncertainty. Specifically, we analyze two stochastic models of regularized learning in continuous games -- one in continuous and one in discrete time with the aim of characterizing the long-run behavior of the induced sequence of play. In stark contrast to deterministic, full-information models of learning (or models with a vanishing learning rate), we show that the resulting dynamics do not converge in general. In lieu of this, we ask instead which actions are played more often in the long run, and by how much. We show that, in strongly monotone games, the dynamics of regularized learning may wander away from equilibrium infinitely often, but they always return to its vicinity in finite time (which we estimate), and their long-run distribution is sharply concentrated around a neighborhood thereof. We quantify the degree of this concentration, and we show that these favorable properties may all break down if the underlying game is not strongly monotone -- underscoring in this way the limits of regularized learning in the presence of persistent randomness and uncertainty.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-10-13 10:41:00

Rate optimal learning of equilibria from data
Till Freihaut, Luca Viano, Emanuele Nevali, Volkan Cevher, Matthieu Geist, Giorgia Ramponi
arxiv.org/abs/2510.09325

@arXiv_statML_bot@mastoxiv.page
2025-10-15 09:49:02

Statistical Guarantees for High-Dimensional Stochastic Gradient Descent
Jiaqi Li, Zhipeng Lou, Johannes Schmidt-Hieber, Wei Biao Wu
arxiv.org/abs/2510.12013

@arXiv_mathAP_bot@mastoxiv.page
2025-10-13 08:26:00

Energy distance and evolution problems: a promising tool for kinetic equations
Gennaro Auricchio, Giuseppe Toscani
arxiv.org/abs/2510.09123

@arXiv_csCL_bot@mastoxiv.page
2025-10-01 11:15:07

Finetune Once: Decoupling General & Domain Learning with Dynamic Boosted Annealing
Yang Tang, Ruijie Liu, Yifan Wang, Shiyu Li, Xi Chen
arxiv.org/abs/2509.26242

@arXiv_csCR_bot@mastoxiv.page
2025-10-06 09:32:39

Adaptive Deception Framework with Behavioral Analysis for Enhanced Cybersecurity Defense
Basil Abdullah AL-Zahrani
arxiv.org/abs/2510.02424

@arXiv_hepph_bot@mastoxiv.page
2025-10-01 09:24:17

Temperature derivative divergence of the electric conductivity and thermal photon emission rate at the critical end point from holography
Yi-Ping Si, Danning Li, Mei Huang
arxiv.org/abs/2509.25636

@arXiv_statME_bot@mastoxiv.page
2025-10-02 09:39:20

False Discovery Rate Control via Bayesian Mirror Statistic
Marco Molinari, Magne Thoresen
arxiv.org/abs/2510.00875 arxiv.org/pdf/2510.00875…

@arXiv_csLG_bot@mastoxiv.page
2025-10-14 13:41:58

Tight Regret Upper and Lower Bounds for Optimistic Hedge in Two-Player Zero-Sum Games
Taira Tsuchiya
arxiv.org/abs/2510.11691 arxiv.org/pdf…

@arXiv_eessSP_bot@mastoxiv.page
2025-10-01 10:28:27

Ultra-Reliable Risk-Aggregated Sum Rate Maximization via Model-Aided Deep Learning
Hassaan Hashmi, Spyridon Pougkakiotis, Dionysis Kalogerias
arxiv.org/abs/2509.26311

@arXiv_eessIV_bot@mastoxiv.page
2025-09-24 08:25:34

Efficient Breast and Ovarian Cancer Classification via ViT-Based Preprocessing and Transfer Learning
Richa Rawat, Faisal Ahmed
arxiv.org/abs/2509.18553

@arXiv_csLG_bot@mastoxiv.page
2025-09-30 14:35:01

Physics-informed learning under mixing: How physical knowledge speeds up learning
Anna Scampicchio, Leonardo F. Toso, Rahel Rickenbach, James Anderson, Melanie N. Zeilinger
arxiv.org/abs/2509.24801

@arXiv_csGT_bot@mastoxiv.page
2025-10-07 08:24:12

Scale-Invariant Regret Matching and Online Learning with Optimal Convergence: Bridging Theory and Practice in Zero-Sum Games
Brian Hu Zhang, Ioannis Anagnostides, Tuomas Sandholm
arxiv.org/abs/2510.04407

@arXiv_statML_bot@mastoxiv.page
2025-10-02 08:35:41

On the Adversarial Robustness of Learning-based Conformal Novelty Detection
Daofu Zhang, Mehrdad Pournaderi, Hanne M. Clifford, Yu Xiang, Pramod K. Varshney
arxiv.org/abs/2510.00463

@arXiv_csLG_bot@mastoxiv.page
2025-10-06 10:26:19

Why Do We Need Warm-up? A Theoretical Perspective
Foivos Alimisis, Rustem Islamov, Aurelien Lucchi
arxiv.org/abs/2510.03164 arxiv.org/pdf/2…

@arXiv_eessSP_bot@mastoxiv.page
2025-10-14 11:48:38

Bayesian Self-Calibration and Parametric Channel Estimation for 6G Antenna Arrays
Patrick H\"odl, Jakob M\"oderl, Erik Leitinger, Klaus Witrisal
arxiv.org/abs/2510.11628

@arXiv_qbioNC_bot@mastoxiv.page
2025-09-29 09:38:28

A Bio-Inspired Minimal Model for Non-Stationary K-Armed Bandits
Krubeal Danieli, Mikkel Elle Lepper{\o}d
arxiv.org/abs/2509.22209 arxiv.org…

@arXiv_physicsoptics_bot@mastoxiv.page
2025-11-25 10:53:53

MOCLIP: A Foundation Model for Large-Scale Nanophotonic Inverse Design
S. Rodionov, A. Burguete-Lopez, M. Makarenko, Q. Wang, F. Getman, A. Fratalocchi
arxiv.org/abs/2511.18980 arxiv.org/pdf/2511.18980 arxiv.org/html/2511.18980
arXiv:2511.18980v1 Announce Type: new
Abstract: Foundation models (FM) are transforming artificial intelligence by enabling generalizable, data-efficient solutions across different domains for a broad range of applications. However, the lack of large and diverse datasets limits the development of FM in nanophotonics. This work presents MOCLIP (Metasurface Optics Contrastive Learning Pretrained), a nanophotonic foundation model that integrates metasurface geometry and spectra within a shared latent space. MOCLIP employs contrastive learning to align geometry and spectral representations using an experimentally acquired dataset with a sample density comparable to ImageNet-1K. The study demonstrates MOCLIP inverse design capabilities for high-throughput zero-shot prediction at a rate of 0.2 million samples per second, enabling the design of a full 4-inch wafer populated with high-density metasurfaces in minutes. It also shows generative latent-space optimization reaching 97 percent accuracy. Finally, we introduce an optical information storage concept that uses MOCLIP to achieve a density of 0.1 Gbit per square millimeter at the resolution limit, exceeding commercial optical media by a factor of six. These results position MOCLIP as a scalable and versatile platform for next-generation photonic design and data-driven applications.
toXiv_bot_toot

@arXiv_mathST_bot@mastoxiv.page
2025-09-30 08:13:46

Generalization Analysis for Classification on Korobov Space
Yuqing Liu
arxiv.org/abs/2509.22748 arxiv.org/pdf/2509.22748

@arXiv_statML_bot@mastoxiv.page
2025-09-30 11:17:41

When Scores Learn Geometry: Rate Separations under the Manifold Hypothesis
Xiang Li, Zebang Shen, Ya-Ping Hsieh, Niao He
arxiv.org/abs/2509.24912

@arXiv_csAI_bot@mastoxiv.page
2025-09-26 07:52:41

Score the Steps, Not Just the Goal: VLM-Based Subgoal Evaluation for Robotic Manipulation
Ramy ElMallah, Krish Chhajer, Chi-Guhn Lee
arxiv.org/abs/2509.19524

@arXiv_csGT_bot@mastoxiv.page
2025-12-10 08:54:21

Robust equilibria in continuous games: From strategic to dynamic robustness
Kyriakos Lotidis, Panayotis Mertikopoulos, Nicholas Bambos, Jose Blanchet
arxiv.org/abs/2512.08138 arxiv.org/pdf/2512.08138 arxiv.org/html/2512.08138
arXiv:2512.08138v1 Announce Type: new
Abstract: In this paper, we examine the robustness of Nash equilibria in continuous games, under both strategic and dynamic uncertainty. Starting with the former, we introduce the notion of a robust equilibrium as those equilibria that remain invariant to small -- but otherwise arbitrary -- perturbations to the game's payoff structure, and we provide a crisp geometric characterization thereof. Subsequently, we turn to the question of dynamic robustness, and we examine which equilibria may arise as stable limit points of the dynamics of "follow the regularized leader" (FTRL) in the presence of randomness and uncertainty. Despite their very distinct origins, we establish a structural correspondence between these two notions of robustness: strategic robustness implies dynamic robustness, and, conversely, the requirement of strategic robustness cannot be relaxed if dynamic robustness is to be maintained. Finally, we examine the rate of convergence to robust equilibria as a function of the underlying regularizer, and we show that entropically regularized learning converges at a geometric rate in games with affinely constrained action spaces.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-10-07 13:05:12

Federated Computation of ROC and PR Curves
Xuefeng Xu, Graham Cormode
arxiv.org/abs/2510.04979 arxiv.org/pdf/2510.04979

@arXiv_csAI_bot@mastoxiv.page
2025-09-25 07:51:32

Score the Steps, Not Just the Goal: VLM-Based Subgoal Evaluation for Robotic Manipulation
Ramy ElMallah, Krish Chhajer, Chi-Guhn Lee
arxiv.org/abs/2509.19524

@arXiv_csLG_bot@mastoxiv.page
2025-09-29 11:32:47

Improving accuracy in short mortality rate series: Exploring Multi-step Forecasting Approaches in Hybrid Systems
Filipe C. L. Duarte, Paulo S. G. de Mattos Neto, Paulo R. A. Firmino
arxiv.org/abs/2509.22395

@arXiv_eessSP_bot@mastoxiv.page
2025-09-25 10:12:32

Data-Driven Reconstruction of Significant Wave Heights from Sparse Observations
Hongyuan Shi, Yilin Zhai, Ping Dong, Zaijin You, Chao Zhan, Qing Wang
arxiv.org/abs/2509.19384

@arXiv_statML_bot@mastoxiv.page
2025-09-29 08:58:37

Effective continuous equations for adaptive SGD: a stochastic analysis view
Luca Callisti, Marco Romito, Francesco Triggiano
arxiv.org/abs/2509.21614

@arXiv_eessAS_bot@mastoxiv.page
2025-09-24 09:13:34

Group Relative Policy Optimization for Text-to-Speech with Large Language Models
Chang Liu, Ya-Jun Hu, Ying-Ying Gao, Shi-Lei Zhang, Zhen-Hua Ling
arxiv.org/abs/2509.18798

@arXiv_csLG_bot@mastoxiv.page
2025-09-30 14:40:41

Efficient Hyperparameter Tuning via Trajectory Invariance Principle
Bingrui Li, Jiaxin Wen, Zhanpeng Zhou, Jun Zhu, Jianfei Chen
arxiv.org/abs/2509.25049

@arXiv_csLG_bot@mastoxiv.page
2025-09-30 14:41:51

Scaling with Collapse: Efficient and Predictable Training of LLM Families
Shane Bergsma, Bin Claire Zhang, Nolan Dey, Shaheer Muhammad, Gurpreet Gosal, Joel Hestness
arxiv.org/abs/2509.25087