Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@publicvoit@graz.social
2025-07-10 06:38:30

#Springer Nature book on #machinelearning is full of made-up #citations

@seeingwithsound@mas.to
2025-08-10 10:01:21

Oliver Sacks on sensory substitution in 2010, predictions about the next 30 years discovermagazine.com/we-are-le We are learning to exploit the amazing plasticity…

@arXiv_eessIV_bot@mastoxiv.page
2025-07-10 09:18:51

Deep Brain Net: An Optimized Deep Learning Model for Brain tumor Detection in MRI Images Using EfficientNetB0 and ResNet50 with Transfer Learning
Daniel Onah, Ravish Desai
arxiv.org/abs/2507.07011

@arXiv_quantph_bot@mastoxiv.page
2025-07-11 09:43:41

CleanQRL: Lightweight Single-file Implementations of Quantum Reinforcement Learning Algorithms
Georg Kruse, Rodrigo Coelho, Andreas Rosskopf, Robert Wille, Jeanette Miriam Lorenz
arxiv.org/abs/2507.07593

@cosmos4u@scicomm.xyz
2025-06-10 19:24:51

ChronoFlow - a Data-driven Model for #Gyrochronology: iopscience.iop.org/article/10. -> U of T Astronomers Pioneer Innovative Machine Learning Model to Determine the Ages of Stars: dunlap.utoronto.ca/u-of-t-astr

@arXiv_csHC_bot@mastoxiv.page
2025-07-11 08:00:41

FLoRA: An Advanced AI-Powered Engine to Facilitate Hybrid Human-AI Regulated Learning
Xinyu Li, Tongguang Li, Lixiang Yan, Yuheng Li, Linxuan Zhao, Mladen Rakovi\'c, Inge Molenaar, Dragan Ga\v{s}evi\'c, Yizhou Fan
arxiv.org/abs/2507.07362

@prachisrivas@masto.ai
2025-07-09 05:49:00

Ironically eponymous.
Springer Nature Book on Machine Learning is Full of Made-up Citations
'Based on a tip from a reader, we checked 18 of the 46 citations in the book. Two-thirds of them either did not exist or had substantial errors. And three researchers cited in the book confirmed the works they supposedly authored were fake or the citation contained substantial errors.'

@arXiv_csAI_bot@mastoxiv.page
2025-08-11 09:04:19

ME$^3$-BEV: Mamba-Enhanced Deep Reinforcement Learning for End-to-End Autonomous Driving with BEV-Perception
Siyi Lu, Run Liu, Dongsheng Yang, Lei He
arxiv.org/abs/2508.06074

@arXiv_statML_bot@mastoxiv.page
2025-07-11 08:46:21

A Unified Empirical Risk Minimization Framework for Flexible N-Tuples Weak Supervision
Shuying Huang, Junpeng Li, Changchun Hua, Yana Yang
arxiv.org/abs/2507.07771

@arXiv_csCL_bot@mastoxiv.page
2025-07-11 09:57:51

Bridging Logic and Learning: Decoding Temporal Logic Embeddings via Transformers
Sara Candussio, Gaia Saveri, Gabriele Sarti, Luca Bortolussi
arxiv.org/abs/2507.07808