Tootfinder

Opt-in global Mastodon full text search. Join the index!

@fanf@mendeddrum.org
2025-12-22 09:42:01

from my link log —
The Austral programming language. (linear types and capability security)
austral-lang.org/
saved 2023-05-06 dotat.at/:/XU0X…

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:37:40

Locally Linear Convergence for Nonsmooth Convex Optimization via Coupled Smoothing and Momentum
Reza Rahimi Baghbadorani, Sergio Grammatico, Peyman Mohajerin Esfahani
arxiv.org/abs/2511.10239 arxiv.org/pdf/2511.10239 arxiv.org/html/2511.10239
arXiv:2511.10239v1 Announce Type: new
Abstract: We propose an adaptive accelerated smoothing technique for a nonsmooth convex optimization problem where the smoothing update rule is coupled with the momentum parameter. We also extend the setting to the case where the objective function is the sum of two nonsmooth functions. With regard to convergence rate, we provide the global (optimal) sublinear convergence guarantees of O(1/k), which is known to be provably optimal for the studied class of functions, along with a local linear rate if the nonsmooth term fulfills a so-call locally strong convexity condition. We validate the performance of our algorithm on several problem classes, including regression with the l1-norm (the Lasso problem), sparse semidefinite programming (the MaxCut problem), Nuclear norm minimization with application in model free fault diagnosis, and l_1-regularized model predictive control to showcase the benefits of the coupling. An interesting observation is that although our global convergence result guarantees O(1/k) convergence, we consistently observe a practical transient convergence rate of O(1/k^2), followed by asymptotic linear convergence as anticipated by the theoretical result. This two-phase behavior can also be explained in view of the proposed smoothing rule.
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 10:04:30

Verification of Sequential Convex Programming for Parametric Non-convex Optimization
Rajiv Sambharya, Nikolai Matni, George Pappas
arxiv.org/abs/2511.10622 arxiv.org/pdf/2511.10622 arxiv.org/html/2511.10622
arXiv:2511.10622v1 Announce Type: new
Abstract: We introduce a verification framework to exactly verify the worst-case performance of sequential convex programming (SCP) algorithms for parametric non-convex optimization. The verification problem is formulated as an optimization problem that maximizes a performance metric (e.g., the suboptimality after a given number of iterations) over parameters constrained to be in a parameter set and iterate sequences consistent with the SCP update rules. Our framework is general, extending the notion of SCP to include both conventional variants such as trust-region, convex-concave, and prox-linear methods, and algorithms that combine convex subproblems with rounding steps, as in relaxing and rounding schemes. Unlike existing analyses that may only provide local guarantees under limited conditions, our framework delivers global worst-case guarantees--quantifying how well an SCP algorithm performs across all problem instances in the specified family. Applications in control, signal processing, and operations research demonstrate that our framework provides, for the first time, global worst-case guarantees for SCP algorithms in the parametric setting.
toXiv_bot_toot

@arXiv_csGT_bot@mastoxiv.page
2025-12-10 07:58:51

Beyond Revenue and Welfare: Counterfactual Analysis of Spectrum Auctions with Application to Canada's 3800MHz Allocation
Sara Jalili Shani, Kris Joseph, Michael B. McNally, James R. Wright
arxiv.org/abs/2512.08106 arxiv.org/pdf/2512.08106 arxiv.org/html/2512.08106
arXiv:2512.08106v1 Announce Type: new
Abstract: Spectrum auctions are the primary mechanism through which governments allocate scarce radio frequencies, with outcomes that shape competition, coverage, and innovation in telecommunications markets. While traditional models of spectrum auctions often rely on strong equilibrium assumptions, we take a more parsimonious approach by modeling bidders as myopic and straightforward: in each round, firms simply demand the bundle that maximizes their utility given current prices. Despite its simplicity, this model proves effective in predicting the outcomes of Canada's 2023 auction of 3800 MHz spectrum licenses. Using detailed round-by-round bidding data, we estimate bidders' valuations through a linear programming framework and validate that our model reproduces key features of the observed allocation and price evolution. We then use these estimated valuations to simulate a counterfactual auction under an alternative mechanism that incentivizes deployment in rural and remote regions, aligning with one of the key objectives set out in the Canadian Telecommunications Act. The results show that the proposed mechanism substantially improves population coverage in underserved areas. These findings demonstrate that a behavioral model with minimal assumptions is sufficient to generate reliable counterfactual predictions, making it a practical tool for policymakers to evaluate how alternative auction designs may influence future outcomes. In particular, our study demonstrates a method for counterfactual mechanism design, providing a framework to evaluate how alternative auction rules could advance policy goals such as equitable deployment across Canada.
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 13:23:10

Replaced article(s) found for math.OC. arxiv.org/list/math.OC/new
[1/1]:
- A robust BFGS algorithm for unconstrained nonlinear optimization problems
Yaguang Yang
arxiv.org/abs/1212.5929
- Quantum computing and the stable set problem
Alja\v{z} Krpan, Janez Povh, Dunja Pucher
arxiv.org/abs/2405.12845 mastoxiv.page/@arXiv_mathOC_bo
- Mean Field Game with Reflected Jump Diffusion Dynamics: A Linear Programming Approach
Zongxia Liang, Xiang Yu, Keyu Zhang
arxiv.org/abs/2508.20388 mastoxiv.page/@arXiv_mathOC_bo
- Differential Dynamic Programming for the Optimal Control Problem with an Ellipsoidal Target Set a...
Sungjun Eom, Gyunghoon Park
arxiv.org/abs/2509.07546 mastoxiv.page/@arXiv_mathOC_bo
- On the Moreau envelope properties of weakly convex functions
Marien Renaud, Arthur Leclaire, Nicolas Papadakis
arxiv.org/abs/2509.13960 mastoxiv.page/@arXiv_mathOC_bo
- Automated algorithm design via Nevanlinna-Pick interpolation
Ibrahim K. Ozaslan, Tryphon T. Georgiou, Mihailo R. Jovanovic
arxiv.org/abs/2509.21416 mastoxiv.page/@arXiv_mathOC_bo
- Optimal Control of a Bioeconomic Crop-Energy System with Energy Reinvestment
Othman Cherkaoui Dekkaki
arxiv.org/abs/2510.11381 mastoxiv.page/@arXiv_mathOC_bo
- Point Convergence Analysis of the Accelerated Gradient Method for Multiobjective Optimization: Co...
Yingdong Yin
arxiv.org/abs/2510.26382 mastoxiv.page/@arXiv_mathOC_bo
- History-Aware Adaptive High-Order Tensor Regularization
Chang He, Bo Jiang, Yuntian Jiang, Chuwen Zhang, Shuzhong Zhang
arxiv.org/abs/2511.05788
- Equivalence of entropy solutions and gradient flows for pressureless 1D Euler systems
Jos\'e Antonio Carrillo, Sondre Tesdal Galtung
arxiv.org/abs/2312.04932 mastoxiv.page/@arXiv_mathAP_bo
- Kernel Modelling of Fading Memory Systems
Yongkang Huo, Thomas Chaffey, Rodolphe Sepulchre
arxiv.org/abs/2403.11945 mastoxiv.page/@arXiv_eessSY_bo
- The Maximum Theoretical Ground Speed of the Wheeled Vehicle
Altay Zhakatayev, Mukatai Nemerebayev
arxiv.org/abs/2502.15341 mastoxiv.page/@arXiv_physicscl
- Hessian stability and convergence rates for entropic and Sinkhorn potentials via semiconcavity
Giacomo Greco, Luca Tamanini
arxiv.org/abs/2504.11133 mastoxiv.page/@arXiv_mathPR_bo
- Optimizing the ground state energy of the three-dimensional magnetic Dirichlet Laplacian with con...
Matthias Baur
arxiv.org/abs/2504.21597 mastoxiv.page/@arXiv_mathph_bo
- A localized consensus-based sampling algorithm
Arne Bouillon, Alexander Bodard, Panagiotis Patrinos, Dirk Nuyens, Giovanni Samaey
arxiv.org/abs/2505.24861 mastoxiv.page/@arXiv_mathNA_bo
- A Novel Sliced Fused Gromov-Wasserstein Distance
Moritz Piening, Robert Beinert
arxiv.org/abs/2508.02364 mastoxiv.page/@arXiv_csLG_bot/
- Minimal Regret Walras Equilibria for Combinatorial Markets via Duality, Integrality, and Sensitiv...
Alo\"is Duguet, Tobias Harks, Martin Schmidt, Julian Schwarz
arxiv.org/abs/2511.09021 mastoxiv.page/@arXiv_csGT_bot/
toXiv_bot_toot

@beeb@hachyderm.io
2025-12-10 17:37:59
Content warning: Advent of Code 2025 Day 10

Yes! Today's puzzle in #AdventOfCode was quite hard (especially part 2) but so rewarding and I learned a lot!
For part 1, I implemented A* from scratch, my favorite little pathfinding algo that I use pretty much every year for #AoC (sometimes I use a lib instead of implementing it but it's been a while so a refresher was in order).
For part 2, after trying A* again and noticing it was running for way too long, I went back to the drawing board and solved the first machine by hand. I noticed the constraints were a system of linear equations.
I then researched algorithms to solve such integer programming problems and didn't feel like learning AND implementing the algorithms in one day (ain't nobody got time fo that). But this lead me to discover the `good_lp` #rust crate which is really good and that I will keep in my back pocket from now on!
So I used the library to define a system of variables and constraints which could be solved magically for me.
#AoC2025 #AdventOfCode2025 #RustLang