2025-10-15 09:28:32
Robust Functional Logistic Regression
Berkay Akturk, Ufuk Beyaztas, Han Lin Shang
https://arxiv.org/abs/2510.12048 https://arxiv.org/pdf/2510.12048
Robust Functional Logistic Regression
Berkay Akturk, Ufuk Beyaztas, Han Lin Shang
https://arxiv.org/abs/2510.12048 https://arxiv.org/pdf/2510.12048
dHPR: A Distributed Halpern Peaceman--Rachford Method for Non-smooth Distributed Optimization Problems
Zhangcheng Feng, Defeng Sun, Yancheng Yuan, Guojun Zhang
https://arxiv.org/abs/2511.10069 https://arxiv.org/pdf/2511.10069 https://arxiv.org/html/2511.10069
arXiv:2511.10069v1 Announce Type: new
Abstract: This paper introduces the distributed Halpern Peaceman--Rachford (dHPR) method, an efficient algorithm for solving distributed convex composite optimization problems with non-smooth objectives, which achieves a non-ergodic $O(1/k)$ iteration complexity regarding Karush--Kuhn--Tucker residual. By leveraging the symmetric Gauss--Seidel decomposition, the dHPR effectively decouples the linear operators in the objective functions and consensus constraints while maintaining parallelizability and avoiding additional large proximal terms, leading to a decentralized implementation with provably fast convergence. The superior performance of dHPR is demonstrated through comprehensive numerical experiments on distributed LASSO, group LASSO, and $L_1$-regularized logistic regression problems.
toXiv_bot_toot
Multilingual Hope Speech Detection: A Comparative Study of Logistic Regression, mBERT, and XLM-RoBERTa with Active Learning
T. O. Abiola, K. D. Abiodun, O. E. Olumide, O. O. Adebanji, O. Hiram Calvo, Grigori Sidorov
https://arxiv.org/abs/2509.20315
Generalized Nonnegative Structured Kruskal Tensor Regression
Xinjue Wang, Esa Ollila, Sergiy A. Vorobyov, Ammar Mian
https://arxiv.org/abs/2509.19900 https://
Replaced article(s) found for cs.CV. https://arxiv.org/list/cs.CV/new
[2/4]:
- Robustness and sex differences in skin cancer detection: logistic regression vs CNNs
Pedersen, Sydendal, Wulff, Raumanns, Petersen, Cheplygina
Active-Learning Inspired Ab Initio Theory-Experiment Loop Approach for Management of Material Defects: Application to Superconducting Qubits
Sarvesh Chaudhari, Cristobal Mendez, Rushil Choudhary, Tathagata Banerjee, Maciej Olszewski, Jadrien Paustian, Jaehong Choi, Zhaslan Baraissov, Raul Hernandez, David Muller, Britton Plourde, Gregory Fuchs, Valla Fatemi, Tomas Arias
LLM-Augmented and Fair Machine Learning Framework for University Admission Prediction
Mohammad Abbadi, Yassine Himeur, Shadi Atalla, Dahlia Mansoor, Wathiq Mansoor
https://arxiv.org/abs/2509.22560
Motional representation; the ability to predict odor characters using molecular vibrations
Yuki Harada, Shuichi Maeda, Junwei Shen, Taku Misonou, Hirokazu Hori, Shinichiro Nakamura
https://arxiv.org/abs/2509.16245
Statistical Crime Linkage: Evaluating approaches within the Covenant for Using AI in Policing
Nathan A. Judd, Amy V. Tansell, Benjamin Costello, Liam Leonard, Jessica Woodhams, Rowland G. Seymour
https://arxiv.org/abs/2510.03730
Multifractal features of multimodal cardiac signals: Nonlinear dynamics of exercise recovery
A. Maluckov, D. Stojanovic, M. Miletic, Lj. Hadzievski, J. Petrovic
https://arxiv.org/abs/2509.23317
Automotive Sound Quality for EVs: Psychoacoustic Metrics with Reproducible AI/ML Baselines
Mandip Goswami
https://arxiv.org/abs/2509.16901 https://arxiv.or…