Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@stefanlaser@social.tchncs.de
2025-12-08 06:33:21

Taboo in the clean room: workers in #semiconductor fabs, e.g. TSMC in #Taiwan, face high mental pressure. They cannot eat pizza – it’s too similar to the form of an IC waver. 😬
I will continue dropping these insights, here from clinical psychology. Unions are banned, btw., so better med…

A packed PowerPoint slide with multiple stressors in a clean room. The taboo of eating pizza is a colourful example of serious matters
@arXiv_physicsinsdet_bot@mastoxiv.page
2026-02-02 09:14:39

High-bandwidth frequency domain multiplexed readout of transition-edge sensors for neutrinoless double beta decay searches
M. Adami\v{c} (McGill,LBNL), M. Beretta (UCB,INFN), J. Camilleri (LBNL,Virginia Tech), C. Capelli (LBNL,Zurich U.), M. A. Dobbs (McGill), T. Elleflot (LBNL), B. K. Fujikawa (LBNL), Yu. G. Kolomensky (LBNL,UCB), D. Mayer (MIT), J. Montgomery (McGill), V. Novosad (ANL), A. M. Sindhwad (UCB), V. Singh (UCB), G. Smecher (t0.technology), A. Suzuki (LBNL), B. Welliver (UCB)
arxiv.org/abs/2601.23106 arxiv.org/pdf/2601.23106 arxiv.org/html/2601.23106
arXiv:2601.23106v1 Announce Type: new
Abstract: The next-generation of cryogenic neutrinoless double-beta decay experiments require increasingly fast readout in order to improve background discrimination. These experiments, operated as cryogenic calorimeters at $\sim$10 mK, are usually read out by high-impedance neutron transmutation doped (NTD) thermistors, which provide good energy resolution, but are limited by $\sim$1 ms response times. Superconducting detectors, such as transition-edge sensors (TESs) with a time resolution of $\sim$100 $\mu$s, offer superior timing performance over NTD semiconductor bolometers. To make this technology viable for an application to a thousand or more channels, multiplexed readout is necessary in order to minimize the thermal load and radioactive contamination induced by the readout. Frequency-domain multiplexing readout (fMux) for TESs, previously developed at Berkeley Lab and McGill University, is currently in use for mm-wave telescopes with detector sampling rates in the order of 100 Hz. We demonstrate a new readout system, based on the McGill/Berkeley digital fMux readout, to satisfy the higher bandwidth and noise requirements of the next generation of TES-instrumented cryogenic calorimeters. The new readout samples detectors at 156 kHz, three orders of magnitude faster than its cosmology-oriented predecessor. Each multiplexing readout module comprises ten superconducting resonators in the MHz range and a superconducting quantum interference device (SQUID), interfaced to high-bandwidth field programmable gate array (FPGA)-based electronics for digital signal processing and low-latency feedback.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 11:50:31

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[2/3]:
- Sharp Structure-Agnostic Lower Bounds for General Functional Estimation
Jikai Jin, Vasilis Syrgkanis
arxiv.org/abs/2512.17341 mastoxiv.page/@arXiv_statML_bo
- Timely Information Updating for Mobile Devices Without and With ML Advice
Yu-Pin Hsu, Yi-Hsuan Tseng
arxiv.org/abs/2512.17381 mastoxiv.page/@arXiv_csNI_bot/
- SWE-Bench : A Framework for the Scalable Generation of Software Engineering Benchmarks from Open...
Wang, Ramalho, Celestino, Pham, Liu, Sinha, Portillo, Osunwa, Maduekwe
arxiv.org/abs/2512.17419 mastoxiv.page/@arXiv_csSE_bot/
- Perfect reconstruction of sparse signals using nonconvexity control and one-step RSB message passing
Xiaosi Gu, Ayaka Sakata, Tomoyuki Obuchi
arxiv.org/abs/2512.17426 mastoxiv.page/@arXiv_statML_bo
- MULTIAQUA: A multimodal maritime dataset and robust training strategies for multimodal semantic s...
Jon Muhovi\v{c}, Janez Per\v{s}
arxiv.org/abs/2512.17450 mastoxiv.page/@arXiv_csCV_bot/
- When Data Quality Issues Collide: A Large-Scale Empirical Study of Co-Occurring Data Quality Issu...
Emmanuel Charleson Dapaah, Jens Grabowski
arxiv.org/abs/2512.17460 mastoxiv.page/@arXiv_csSE_bot/
- Behavioural Effects of Agentic Messaging: A Case Study on a Financial Service Application
Olivier Jeunen, Schaun Wheeler
arxiv.org/abs/2512.17462 mastoxiv.page/@arXiv_csIR_bot/
- Linear Attention for Joint Power Optimization and User-Centric Clustering in Cell-Free Networks
Irched Chafaa, Giacomo Bacci, Luca Sanguinetti
arxiv.org/abs/2512.17466 mastoxiv.page/@arXiv_eessSY_bo
- Translating the Rashomon Effect to Sequential Decision-Making Tasks
Dennis Gross, J{\o}rn Eirik Betten, Helge Spieker
arxiv.org/abs/2512.17470 mastoxiv.page/@arXiv_csAI_bot/
- Alternating Direction Method of Multipliers for Nonlinear Matrix Decompositions
Atharva Awari, Nicolas Gillis, Arnaud Vandaele
arxiv.org/abs/2512.17473 mastoxiv.page/@arXiv_eessSP_bo
- TwinSegNet: A Digital Twin-Enabled Federated Learning Framework for Brain Tumor Analysis
Almustapha A. Wakili, Adamu Hussaini, Abubakar A. Musa, Woosub Jung, Wei Yu
arxiv.org/abs/2512.17488 mastoxiv.page/@arXiv_csCV_bot/
- Resource-efficient medical image classification for edge devices
Mahsa Lavaei, Zahra Abadi, Salar Beigzad, Alireza Maleki
arxiv.org/abs/2512.17515 mastoxiv.page/@arXiv_eessIV_bo
- PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning i...
Brussee, Valkema, Weijer, Doeleman, Schrader, Kers
arxiv.org/abs/2512.17517 mastoxiv.page/@arXiv_csCV_bot/
- HydroGym: A Reinforcement Learning Platform for Fluid Dynamics
Christian Lagemann, et al.
arxiv.org/abs/2512.17534 mastoxiv.page/@arXiv_physicsfl
- When De-noising Hurts: A Systematic Study of Speech Enhancement Effects on Modern Medical ASR Sys...
Chondhekar, Murukuri, Vasani, Goyal, Badami, Rana, SN, Pandia, Katiyar, Jagadeesh, Gulati
arxiv.org/abs/2512.17562 mastoxiv.page/@arXiv_csSD_bot/
- Enabling Disaggregated Multi-Stage MLLM Inference via GPU-Internal Scheduling and Resource Sharing
Lingxiao Zhao, Haoran Zhou, Yuezhi Che, Dazhao Cheng
arxiv.org/abs/2512.17574 mastoxiv.page/@arXiv_csDC_bot/
- SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation i...
N. A. Adarsh Pritam, Jeba Shiney O, Sanyam Jain
arxiv.org/abs/2512.17585 mastoxiv.page/@arXiv_eessIV_bo
- MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection an...
Tosin Ige, Christopher Kiekintveld, Aritran Piplai, Asif Rahman, Olukunle Kolade, Sasidhar Kunapuli
arxiv.org/abs/2512.17594 mastoxiv.page/@arXiv_csCR_bot/
- Confidence-Credibility Aware Weighted Ensembles of Small LLMs Outperform Large LLMs in Emotion De...
Menna Elgabry, Ali Hamdi
arxiv.org/abs/2512.17630 mastoxiv.page/@arXiv_csCL_bot/
- Generative Multi-Objective Bayesian Optimization with Scalable Batch Evaluations for Sample-Effic...
Madhav R. Muthyala, Farshud Sorourifar, Tianhong Tan, You Peng, Joel A. Paulson
arxiv.org/abs/2512.17659 mastoxiv.page/@arXiv_statML_bo
toXiv_bot_toot

@arXiv_physicsoptics_bot@mastoxiv.page
2025-11-25 09:41:12

Optical kernel machine with programmable nonlinearity
SeungYun Han, Fei Xia, Sylvain Gigan, Bruno Loureiro, Hui Cao
arxiv.org/abs/2511.17880 arxiv.org/pdf/2511.17880 arxiv.org/html/2511.17880
arXiv:2511.17880v1 Announce Type: new
Abstract: Optical kernel machines offer high throughput and low latency. A nonlinear optical kernel can handle complex nonlinear data, but power consumption is typically high with the conventional nonlinear optical approach. To overcome this issue, we present an optical kernel with structural nonlinearity that can be continuously tuned at low power. It is implemented in a linear optical scattering cavity with a reconfigurable micro-mirror array. By tuning the degree of nonlinearity with multiple scattering, we vary the kernel sensitivity and information capacity. We further optimize the kernel nonlinearity to best approximate the parity functions from first order to fifth order for binary inputs. Our scheme offers potential applicability across photonic platforms, providing programmable kernels with high performance and low power consumption.
toXiv_bot_toot